Advertisement

The ecological role of cephalopods and their representation in ecosystem models

  • Thibaut de la ChesnaisEmail author
  • Elizabeth A. Fulton
  • Sean R. Tracey
  • Gretta T. Pecl
Reviews

Abstract

Cephalopods, especially squids, are believed to have a structuring role in marine ecosystems as a link between different trophic levels, primarily due to their voracious prey consumption and high production rate. Cephalopod ecology, however, is still poorly understood as observational studies often give highly uncertain and variable results due to the peculiarities of cephalopod behaviour and biology, and their responsiveness to external drivers. This review evaluates our representation of cephalopods in ecosystem models and the insights given by these models on the role of cephalopods in our oceans. We examined ecosystem models from 13 regions to analyse the representation of cephalopods and compared their results to local trophic studies. Our analysis indicated that most ecosystem models inadequately include cephalopods in terms of model structure and parametrization; although some models still have the capacity to draw valuable conclusions regarding the impact and role of cephalopods within the system. Oceanic squid species have a major role linking trophic levels and food webs from different habitats. The importance of neritic species varies locally, but generally cephalopods have a substantial impact via their consumer role. To better understand the ecological role of cephalopods, improved representation of these species in ecosystem models is a critical requirement and could be achieved relatively easily to more accurately articulate the mechanisms regulating the ecological role of cephalopods.

Keywords

Cephalopods Ecological role Ecosystem model Key species 

Notes

Acknowledgements

We would like to acknowledge the financial and material support of the Institute for Marine and Antarctic Studies (IMAS) and the Commonwealth Scientific and Industrial Research Organization (CSIRO). GTP was supported by an ARC Future Fellowship (FT140100596). I would also like to thank the reviewers who provided comments that allowed us to substantially improve the manuscript through the revision process, both in terms of robustness and clarity of presentation.

Supplementary material

11160_2019_9554_MOESM1_ESM.pdf (10 kb)
Supplementary material 1 (PDF 11 kb)
11160_2019_9554_MOESM2_ESM.pdf (136 kb)
Supplementary material 2 (PDF 136 kb)
11160_2019_9554_MOESM3_ESM.pdf (256 kb)
Supplementary material 3 (PDF 257 kb)
11160_2019_9554_MOESM4_ESM.pdf (94 kb)
Supplementary material 4 (PDF 94 kb)
11160_2019_9554_MOESM5_ESM.pdf (85 kb)
Supplementary material 5 (PDF 86 kb)

References

  1. Abitía-Cardenas LA, Galván-Magaña F, Gutierrez-Sanchez FJ et al (1999) Diet of blue marlin Makaira mazara off the coast of Cabo San Lucas, Baja California Sur, Mexico. Fish Res 44:95–100CrossRefGoogle Scholar
  2. Abitía-Cardenas LA, Muhlia-Melo A, Cruz-Escalona V, Galván-Magaña F (2002) Trophic dynamics and seasonal energetics of striped marlin Tetrapturus audax in the southern Gulf of California, Mexico. Fish Res 57:287–295CrossRefGoogle Scholar
  3. Adamo SA, Ehgoetz K, Sangster C, Whitehorne I (2006) Signaling to the enemy? Body pattern expression and its response to external cues during hunting in the cuttlefish Sepia officinalis (Cephalopoda). Biol Bull 210:192–200CrossRefPubMedGoogle Scholar
  4. Alarcón-muñoz R, Cubillos L, Gatica C (2008) Jumbo squid (Dosidicus gigas) biomass off central Chile: effects on chilean hake (Merluccius gayi). CalCOFI Rep 49:157–166Google Scholar
  5. Anderson CIH, Rodhouse PG (2001) Life cycles, oceanography and variability: ommastrephid squid in variable oceanographic environments. Fish Res 54:133–143CrossRefGoogle Scholar
  6. Anderson SC, Flemming JM, Watson R, Lotze HK (2011) Rapid global expansion of invertebrate fisheries: trends, drivers, and ecosystem effects. PLoS ONE 6(3):1–9Google Scholar
  7. André J, Haddon M, Pecl GT (2010) Modelling climate-change-induced nonlinear thresholds in cephalopod population dynamics. Glob Change Biol 16:2866–2875CrossRefGoogle Scholar
  8. Antony PJ, Dhanya S, Lyla PS, Kurup BM, Ajmal Khan S (2010) Ecological role of stomatopods (mantis shrimps) and potential impacts of trawling in a marine ecosystem of the southeast coast of India. Ecol Model 221:2604–2614.  https://doi.org/10.1016/j.ecolmodel.2010.07.017 CrossRefGoogle Scholar
  9. Arancibia H, Neira S (2005) Modelling the predation of common hake (Merluccius gayi) by jumbo squid (Dosidicus gigas) in central Chile (33-39°S). ICES CM 2005/BB: 16, 16 ppGoogle Scholar
  10. Arancibia H, Neira S (2008) Overview of the Chilean hake (Merluccius Gayi) stock, a biomass forecast, and the jumbo squid (Dosidicus gigas) predator–prey relationship off central Chile (33°S–39°). CalCOFI Rep 49:104–115Google Scholar
  11. Arkhipkin AI (2004) Diversity in growth and longevity in short-lived animals: squid of the suborder Oegopsina. Mar Freshw Res 55:341–355CrossRefGoogle Scholar
  12. Arkhipkin AI (2013) Squid as nutrient vectors linking Southwest Atlantic marine ecosystems. Deep Res Part II Top Stud Oceanogr 95:7–20.  https://doi.org/10.1016/j.dsr2.2012.07.003 CrossRefGoogle Scholar
  13. Arkhipkin AI, Brickle P, Laptikhovsky V, Winter A (2012) Dining hall at sea: feeding migrations of nektonic predators to the eastern Patagonian Shelf. J Fish Biol 81:882–902CrossRefPubMedGoogle Scholar
  14. Arkhipkin AI, Rodhouse PGK, Pierce GJ et al (2015) World squid fisheries. Rev Fish Sci Aquac 23(2):92–252CrossRefGoogle Scholar
  15. Arreguín-Sánchez F, Arcos E, Chávez EA (2002) Flows of biomass and structure in an exploited benthic ecosystem in the Gulf of California, Mexico. Ecol Model 156(2–3):167–183CrossRefGoogle Scholar
  16. Barausse A, Duci A, Mazzoldi C, Artioli Y, Palmeri L (2009) Trophic network model of the Northern Adriatic Sea: analysis of an exploited and eutrophic ecosystem. Estuar Coast Shelf Sci 83(4):577–590.  https://doi.org/10.1016/j.ecss.2009.05.003 CrossRefGoogle Scholar
  17. Barbosa A, Mäthger LM, Buresch KC et al (2008) Cuttlefish camouflage: the effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns. Vis Res 48(10):1242–1253CrossRefPubMedGoogle Scholar
  18. Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: can arctic life count on evolution? Integr Comp Biol 44(2):140–151CrossRefPubMedGoogle Scholar
  19. Blanchard JL, Law R, Castle MD, Jennings S (2011) Coupled energy patways and the resilience of size-structured food webs. Theor. Ecol 4:289–300CrossRefGoogle Scholar
  20. Boyle PR, Boletzky SV (1996) Cephalopod populations: definition and dynamics. Philos Trans R Soc B Biol Sci 351:985–1002CrossRefGoogle Scholar
  21. Boyle P, Rodhouse P (2005) Cephalopods: ecology and fisheries. Blackwell Science Ltd, LondonCrossRefGoogle Scholar
  22. Bradshaw CJA, Hindell MA, Best NJ et al (2003) You are what you eat: describing the foraging ecology of southern elephant seals (Mirounga leonina) using blubber fatty acids. Proc R Soc Lond 270:1283–1292CrossRefGoogle Scholar
  23. Braley M, Goldsworthy SD, Page B, Steer M, Austin JJ (2010) Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Mol Ecol Resour 10:466–474.  https://doi.org/10.1111/j.1755-0998.2009.02767.x CrossRefPubMedGoogle Scholar
  24. Brand EJ, Kaplan IC, Harvey CJ et al (2007) A spatially explicit ecosystem model of the California Current’ s food web and oceanography. NOAA technical memorandum NMFS-NWFSC-84, 145 ppGoogle Scholar
  25. Brickle P, Olson PD, Littlewood DTJ, Bishop A, Arkhipkin AI (2001) from waters off the Falkland Islands, with a phylogenetically based identification of their cestode larvae. Can J Zool 79(2001):2289–2296CrossRefGoogle Scholar
  26. Brickle P, Arkhipkin AI, Laptikhovsky V, Stocks A, Taylor A (2009) Resource partitioning by two large planktivorous fishes Micromesistius australis and Macruronus magellanicus in the Southwest Atlantic. Estuar Coast Shelf Sci 84:91–98.  https://doi.org/10.1016/j.ecss.2009.06.007 CrossRefGoogle Scholar
  27. Brown DJ, Boyd IL, Crippsl GC, Butler PJ (1999) Fatty acid signature analysis from the milk of Antarctic fur seals and Southern elephant seals from South Georgia: implications for diet determination. Mar Ecol Prog Ser 187:251–263CrossRefGoogle Scholar
  28. Brunetti N, Ivanovic M, Elena B (1998) Ommastrephid squids (Cephalopoda, Ommastrephidae). In: Boschi EE (ed) The Argentin Sea and its fisheries resources. Vol. 2: Mollusc of interest for fisheries. Culture and reproductive strategies of bivalves and echinoids. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, pp 37–68Google Scholar
  29. Bulman C, Condie S, Furlani D et al (2006) Trophic dynamics of the eastern shelf and slope of the south east fishery: impacts of and on the fishery. Final report (2002), 197Google Scholar
  30. Bulman CM, Condie SA, Neira FJ, Goldsworthy SD, Fulton EA (2011) The trophodynamics of small pelagic fishes in the southern Australian ecosystem and the implications for ecosystem modelling of southern temperate fisheries. FRDC final report 2008/023Google Scholar
  31. Bundy A, Lilly GR, Shelton PA (2000) A mass balance model of the Newfoundland–Labrador Shelf. Can Tech Rep Fish Aquat Sci 2310:157Google Scholar
  32. Caddy JF, Rodhouse PG (1998) Cephalopod and groundfish landings: evidence for ecological change in global fisheries? Rev Fish Biol 8:431–444CrossRefGoogle Scholar
  33. Castillo K, Ibañez CM, González C, Chong J (2007) Dieta del pez espada Xiphias gladius Linnaeus, 1758 en distintas zonas de pesca frente a Chile central durante el otoño de 2004. Rev Biol Mar Oceanogr 42(2):149–156CrossRefGoogle Scholar
  34. Chambers CA, Dick TA (2007) Using environmental variables to predict the structure of deep-sea Arctic fish communities: implications for food web construction. Arct Antarct Alp Res 39(1):2–8CrossRefGoogle Scholar
  35. Chancollon O, Pusineri C, Ridoux V (2006) Food and feeding ecology of Northeast Atlantic swordfish (Xiphias gladius) off the Bay of Biscay. ICES J Mar Sci 63:1075–1085Google Scholar
  36. Chase BC (2002) Differences in diet of Atlantic bluefin tuna (Thunnus thynnus) at five seasonal feeding grounds on the New England continental shelf. Fish Bull 100:168–180Google Scholar
  37. Chen CS, Chiu TS (2003) Variations of life history parameters in two geographical groups of the neon flying squid, Ommastrephes bartramii, from the North Pacific. Fish Res 63:349–366CrossRefGoogle Scholar
  38. Cherel Y, Ducatez S, Fontaine C, Richard P, Guinet C (2008) Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Mar Ecol Prog Ser 370:239–247CrossRefGoogle Scholar
  39. Cherel Y, Ridoux V, Spitz J, Richard P (2009) Stable isotopes document the trophic structure of a deep-sea cephalopod assemblage including giant octopod and giant squid. Biol Lett 5:364–367CrossRefPubMedPubMedCentralGoogle Scholar
  40. Chiara P, Bearzi G, Christensen V (2010) Effects of local fisheries and ocean productivity on the northeastern Ionian Sea ecosystem. Ecol Model 221(11):1526–1544CrossRefGoogle Scholar
  41. Chong J, Oyarzún C, Galleguillos R et al (2005) Fishery biology parameters of Jumbo squid (Orbigny, 1835) (Cephalopoda: Ommastrephidae), in central Chile coast (29°S–40°S) during 1993–1994. Gayana 69(2):319–328Google Scholar
  42. Christensen V, Walters CJ (2004) Ecopath with Ecosim: methods, capabilities and limitations. Ecol Model 172(2–4):109–139CrossRefGoogle Scholar
  43. Clarke MR (1996) The role of cephalopods in world’s ocean: general conclusions and the future. Philos Trans R Soc B Biol Sci 351:1105–1112CrossRefGoogle Scholar
  44. Clarke MR (2006) Oceanic cephalopod distribution and species diversity in the eastern north Atlantic. Arquipél Life Mar Sci 23A:27–46Google Scholar
  45. Clarke MR, Stevens JD (1974) Cephalopods, blue sharks and migration. J Mar Biol Assoc UK 54:949–957CrossRefGoogle Scholar
  46. Clarke R, Paliza O (2001) The food of sperm whales in the Southeast Pacific. Mar Mamm Sci 17(2):427–429CrossRefGoogle Scholar
  47. Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proc R Soc B Biol Sci 273(1599):2257–2266CrossRefGoogle Scholar
  48. Coleman N, Mobley M (1984) Diets of commercially exploited fish from Bass Strait and adjacent Victorian waters, South-eastern Australia. Aust J Mar Freshw Res 35:549–560CrossRefGoogle Scholar
  49. Coll M, Shannon LJ, Moloney CL, Palomera I, Tudela S (2006) Comparing trophic flows and fishing impacts of a NW Mediterranean ecosystem with coastal upwelling systems by means of standardized models and indicators. Ecol Model 198:53–70CrossRefGoogle Scholar
  50. Coll M, Palomera I, Tudela S, Dowd M (2008) Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978–2003. Ecol Model 217:95–116CrossRefGoogle Scholar
  51. Coll M, Navarro J, Olson RJ, Christensen V (2013) Assessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models. Deep Sea Res Part II Top Stud Oceanogr 95:21–36CrossRefGoogle Scholar
  52. Collins MA, Rodhouse PGK (2006) Southern ocean cephalopods. Adv Mar Biol 50:191–265CrossRefPubMedGoogle Scholar
  53. Collins MA, Yau C, Allcock L, Thurston MH (2001) Distribution of deep-water benthic and bentho-pelagic cephalopods from the north-east Atlantic. J Mar Biol Assoc UK 81:105–117CrossRefGoogle Scholar
  54. Cornejo-Donoso J, Antezana T (2008) Preliminary trophic model of the Antarctic Peninsula Ecosystem (Sub-area CCAMLR 481). Ecol Model 218:1–17CrossRefGoogle Scholar
  55. Croxall JP, Wood AG (2002) The importance of the Patagonian Shelf for top predator species breeding at South Georgia. Aquat Conserv Mar Freshw Ecosyst 12:101–118CrossRefGoogle Scholar
  56. Currie DJ, Mittelbach GG, Cornell HV et al (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7(12):1121–1134CrossRefGoogle Scholar
  57. Daneri GA, Carlinv AR, Rodhouse PGK (2000) Cephalopod diet of the southern elephant seal, Mirounga leonina, at King George Island, South Shetland Islands. Antarct Sci 12(1):16–19CrossRefGoogle Scholar
  58. Das K, Lepoint G, Loizeau V et al (2000) Tuna and dolphin associations in the North-east Atlantic: evidence of different ecological niches from stable isotope and heavy metal measurements. Mar Pollut Bull 40(2):102–109CrossRefGoogle Scholar
  59. Davenport SR, Bax NJ (2002) A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen. Can J Fish Aquat Sci 59(3):514–530CrossRefGoogle Scholar
  60. dos Santos RA, Haimovici M (2000) The Argentine short-finned squid Illex argentinus in the food webs of southern Brazil. Sarsia N Atl Mar Sci 85:49–60CrossRefGoogle Scholar
  61. Doubleday ZA, Prowse TAA, Arkhipkin A et al (2016) Global proliferation of cephalopods. Curr Biol 26:406–407CrossRefGoogle Scholar
  62. Eadie BJ, McKee BA, Lansing MB, Metz S (1994) Records of nutrient-enhanced coastal ocean productivity in sediments from the Louisiana continental shelf. Estuaries 17(4):754–765CrossRefGoogle Scholar
  63. Ehrhardt NM (1991) Potential impact of a seasonal migratory jumbo squid (Dosidicus gigas) stock on a gulf of California sardine (Sardinops sagax caerulea) population. J Chem Inf Model 49(1–2):325–332Google Scholar
  64. Evans K, Hindell MA (2004) The diet of sperm whales (Physeter macrocephalus) in southern Australian waters. ICES J Mar Sci 61:1313–1329CrossRefGoogle Scholar
  65. Field JC, Francis RC, Aydin K (2006) Top-down modeling and bottom-up dynamics: linking a fisheries-based ecosystem model with climate hypotheses in the Northern California Current. Prog Oceanogr 68:238–270CrossRefGoogle Scholar
  66. Field JC, Baltz KEN, Walker WA (2007) Range expansion and trophic interactions of the jumbo squid, Dosidicus gigas, in the California Current. CalCOFI Rep 48:131–146Google Scholar
  67. Field JC, Elliger C, Baltz K et al (2013) Foraging ecology and movement patterns of jumbo squid (Dosidicus gigas) in the California Current system. Deep Sea Res Part II Top Stud Oceanogr 95:37–51CrossRefGoogle Scholar
  68. Forsythe JW, DeRusha RH, Hanlon RT (1994) Growth, reproduction and life span of Sepia officinalis (Cephalopoda: Mollusca) cultured through seven consecutive generations. J Zool 233(2):175–192.  https://doi.org/10.1111/j.1469-7998.1994.tb08582.x CrossRefGoogle Scholar
  69. Fulton EA (2010) Approaches to end-to-end ecosystem models. J Mar Syst 81(1–2):171–183CrossRefGoogle Scholar
  70. Fulton EA, Johnson P (2012) Structure of Atlantis-SEAP & SEAP modelling data flows: 2010/023. Quantitative testing of fisheries management arrangements under climate change using Atlantis: appendix 1. CSIRO, HobartGoogle Scholar
  71. Fulton EA, Gorton R (2014) Adaptive futures for SE Australian fisheries & aquaculture: climate adaptation simulations. CSIRO, HobartGoogle Scholar
  72. Fulton EA, Smith ADM, Smith DC (2007) Quantitative MSE of alternative management strategies for southeast Australian fisheries. CSIRO, HobartGoogle Scholar
  73. Fulton EA, Johnson P, Gorton R, Boschetti F (2012) SE climate adaptation fisheries & management scenarios. CSIRO, HobartGoogle Scholar
  74. Gannon DP, Read AJ, Craddock JE, Mead JG (1997) Stomach contents of long-finned pilot whales (Globicephala melas) stranded on the U.S. mid-atlantic coast. Mar Mamm Sci 13(3):405–418CrossRefGoogle Scholar
  75. Gardiner K, Dick TA (2010) Arctic cephalopod distributions and their associated predators. Polar Res 29:209–227CrossRefGoogle Scholar
  76. Gasalla MA, Rossi-Wongtschowski CLDB (2004) Contribution of ecosystem analysis to investigating the effects of changes in fishing strategies in the South Brazil Bight coastal ecosystem. Ecol Model 172:283–306CrossRefGoogle Scholar
  77. Gasalla MA, Rodrigues AR, Postuma FA (2010) The trophic role of the squid Loligo plei as a keystone species in the South Brazil Bight ecosystem. ICES J Mar Sci Adv Access 1979:1–12Google Scholar
  78. Goedegebuure M, Melbourne-Thomas J, Corney SP, Hindell MA, Constable AJ (2017) Beyond big fish: the case for more detailed representations of top predators in marine ecosystem models. Ecol Model 359:182–192.  https://doi.org/10.1016/j.ecolmodel.2017.04.004 CrossRefGoogle Scholar
  79. Goldsworthy SD, Page B, Rogers P, Ward T (2011) Establishing ecosystem-based management for the South Australian Sardine fishery: developing ecological performance indicators and reference points to assess the need for ecological allocations. Final report to the Fisheries Research and Development Corporation. South Australian Research and Development Institute (Aquatic Sciences), AdelaideGoogle Scholar
  80. Goldsworthy SD, Page B, Rogers PJ et al (2013) Trophodynamics of the eastern Great Australian Bight ecosystem: ecological change associated with the growth of Australia’s largest fishery. Ecol Model 255:38–57CrossRefGoogle Scholar
  81. González M, Sánchez P (2002) Cephalopod assemblages caught by trawling along the Iberian Peninsula Mediterranean coast. Sci Mar 66(2):199–208CrossRefGoogle Scholar
  82. Griffiths SP, Young JW, Lansdell MJ et al (2010) Ecological effects of longline fishing and climate change on the pelagic ecosystem off eastern Australia. Rev Fish Biol Fish 1998:1–34Google Scholar
  83. Guénette S (2013) An exploratory ecosystem model of the Bay of Bengal large marine ecosystem, Phuket, Thailand. Bay of Bengal large marine ecosystem project (BOBLME) (BOBLME-2014-Ecology-09), 69 ppGoogle Scholar
  84. Guerra A, Rocha F (1994) The diet of Loligo vulgaris and Loligo forbesi (Cephalopoda: Loliginidae) in the galician waters (NW Spain). Fish Res 21(1):43–69CrossRefGoogle Scholar
  85. Guichet R (1995) The diet of European hake (Merluccius merluccius) in the northern part of the Bay of Biscay. ICES J Mar Sci 52:21–31CrossRefGoogle Scholar
  86. Haimovici M, Perez JAA (1991) Coastal cephalopod fauna of Southern Brazil. Bull Mar Sci 49:221–230Google Scholar
  87. Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–953CrossRefPubMedGoogle Scholar
  88. Hanlon R (2007) Cephalopod dynamic camouflage. Curr Biol 17(11):400–404CrossRefGoogle Scholar
  89. Horne PJ, Kaplan IC, Marshall KN et al (2010) Design and parameterization of a spatially explicit ecosystem model of the central California Current. NOAA technical memorandum NMFS-NWFSC-104, 155 ppGoogle Scholar
  90. Hughes TP, Bellwood D, Folke C, Steneck RS, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol 20(7):380–386CrossRefPubMedGoogle Scholar
  91. Hunsicker ME, Essington TE (2008) Evaluating the potential for trophodynamic control of fish by the longfin inshore squid (Loligo pealeii) in the Northwest Atlantic Ocean. Can J Fish Aquat Sci 65:2524–2535CrossRefGoogle Scholar
  92. Hunsicker ME, Essington TE, Watson R, Sumaila UR (2010) The contribution of cephalopods to global marine fisheries: can we have our squid and eat them too? Fish Fish 11(4):421–438.  https://doi.org/10.1111/j.1467-2979.2010.00369 CrossRefGoogle Scholar
  93. Ibáñez CM (2013) Ecological impact of Dosidicus gigas over hake populations in the eastern Pacific Ocean. Amici Molluscarum 21(1):7–16Google Scholar
  94. Ibáñez CM, Ganzález C, Cubillos L (2004) Dieta del pez espada Xiphias gladius Linnaeus, 1758, en agua oceánicas de Chile central en invierno de 2003. Investig Mar 32(2):113–120CrossRefGoogle Scholar
  95. Ibáñez CM, Arancibia H, Cubillos LA (2008) Biases in determining the diet of jumbo squid Dosidicus gigas (D’Orbigny 1835) (Cephalopoda: Ommastrephidae) off southern-central Chile (34°S–40°S). Helgol Mar Res 62:331–338CrossRefGoogle Scholar
  96. Ibáñez CM, Sepúlveda RD, Ulloa P et al (2015) The biology and ecology of the jumbo squid Dosidicus gigas (Cephalopoda) in Chilean waters: a review. Lat Am J Aquat Res 43(3):402–414Google Scholar
  97. Ivanovic ML, Brunetti NE (1992) Food and feeding of Illex argentinus. Antarct Sci 6(2):185–193Google Scholar
  98. Jackson GD, Pecl G (2003) The dynamics of the summer-spawning population of the loliginid squid (Sepioteuthis australis) in Tasmania, Australia_a conveyor belt of recruits. ICES J Mar Sci 60:290–296CrossRefGoogle Scholar
  99. Jackson GD, Buxton NG, George MJA (2000) Diet of the southern opah Lampris immaculatus on the Patagonian Shelf; the significance of the squid Moroteuthis ingens and anthropogenic plastic. Mar Ecol Prog Ser 206:261–271CrossRefGoogle Scholar
  100. Jackson GD, Steer BM, Wotherspoon S, Hobday AJ (2003) Variation in age, growth and maturity in the Australian arrow squid Nototodarus gouldi over time and space—what is the pattern? Mar Ecol Prog Ser 264:57–71CrossRefGoogle Scholar
  101. Jackson GD, Bustamante P, Cherel Y et al (2007) Applying new tools to cephalopod trophic dynamics and ecology: perspectives from the Southern Ocean Cephalopod Workshop, February 2–3, 2006. Rev Fish Biol Fish 17:79–99CrossRefGoogle Scholar
  102. Jarre-Teichmann A, Shannon LJ, Moloney CL, Wickens PA (1998) Comparing trophic flows in the southern Benguela to those in other upwelling ecosystems. S Afr J Mar Sci 19(1):391–414CrossRefGoogle Scholar
  103. Johnson P (2011) Trade-offs between biodiversity conservation and maintaining fisheries yield from Australian marine environments; approaches using the Atlantis ecosystem modelling frameworkGoogle Scholar
  104. Kaplan IC, Horne PJ, Levin PS (2012) Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model. Prog Oceanogr 102:5–18CrossRefGoogle Scholar
  105. Kubodera T, Watanabe H, Ichii T (2007) Feeding habits of the blue shark, Prionace glauca, and salmon shark, Lamna ditropis, in the transition region of the Western North Pacific. Rev Fish Biol Fish 17(2–3):111–124CrossRefGoogle Scholar
  106. Lansdell M, Young J (2007) Pelagic cephalopods from eastern Australia: species composition, horizontal and vertical distribution determined from the diets of pelagic fishes. Rev Fish Biol Fish 17:125–138CrossRefGoogle Scholar
  107. Laptikhovsky V (2002) Diurnal feeding rhythm of the short-fin squid Illex argentinus (Cephalopoda: Ommastrephidae) in the Falkland waters. Fish Res 59(1–2):233–237CrossRefGoogle Scholar
  108. Lassalle G, Lobry J, Le Loc’h F et al (2011) Lower trophic levels and detrital biomass control the Bay of Biscay continental shelf food web: implications for ecosystem management. Prog Oceanogr 91:561–575.  https://doi.org/10.1016/j.pocean.2011.09.002 CrossRefGoogle Scholar
  109. Lassalle G, Gascuel D, Le Loc’h F et al (2012) An ecosystem approach for the assessment of fisheries impacts on marine top predators: the Bay of Biscay case study. ICES J Mar Sci 69(6):925–938CrossRefGoogle Scholar
  110. Lassalle G, Bourdaud P, Saint-Béat B, Rochette S, Niquil N (2014) A toolbox to evaluate data reliability for whole-ecosystem models: application on the Bay of Biscay continental shelf food-web model. Ecol Model 285:13–21CrossRefGoogle Scholar
  111. Lee PG (1995) Nutrition of cephalopods: fueling the system. Mar Freshw Behav Physiol 25(1–3):35–51CrossRefGoogle Scholar
  112. Letelier S, Meléndez R, Carreño E, Lopez S, Barría P (2009) Feeding and trophic relationships of the swordfish (Xiphias gladius Linnaeus, 1758), off central and northern Chile during 2005. Lat Am J Aquat Res 37(1):107–119CrossRefGoogle Scholar
  113. Libralato S, Christensen V, Pauly D (2006) A method for identifying keystone species in food web models. Ecol Model 195:153–171CrossRefGoogle Scholar
  114. Lindgren AR, Giribet G, Nishiguchi MK (2004) A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20:454–486CrossRefGoogle Scholar
  115. Link JS, Fulton EA, Gamble RJ (2010) The northeast US application of ATLANTIS: a full system model exploring marine ecosystem dynamics in a living marine resource management context. Prog Oceanogr 87:214–234.  https://doi.org/10.1016/j.pocean.2010.09.020 CrossRefGoogle Scholar
  116. Lipinski MR (1992) Cephalopods and the Benguela ecosystem—trophic relationships and impact. S Afr J Mar Sci Tydskr Vir Seewetenskap 12:791–802CrossRefGoogle Scholar
  117. Logan JM, Rodríguez-Marín E, Goñi N et al (2011) Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar Biol 158:73–85CrossRefGoogle Scholar
  118. Logan JM, Toppin R, Smith S et al (2013) Contribution of cephalopod prey to the diet of large pelagic fish predators in the central North Atlantic Ocean. Deep Sea Res Part II Top Stud Oceanogr 95:74–82CrossRefGoogle Scholar
  119. Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17(6):1245–1271CrossRefGoogle Scholar
  120. Lopes XM, da Silva E, Bassoi M, dos Santos RA, de Oliveira Santos MC (2012) Feeding habits of Guiana dolphins, Sotalia guianensis, from south-eastern Brazil: new items and a knowledge review. J Mar Biol Assoc UK 92(8):1–11CrossRefGoogle Scholar
  121. Lopez S, Meléndez R, Barría P (2009) Feeding of the shortfin mako shark Isurus oxyrinchus Rafinesque, 1810 (Lamniformes: Lamnidae) in the Southeastern Pacific. Rev Biol Mar Oceanogr 44(2):439–451CrossRefGoogle Scholar
  122. Lopez S, Meléndez R, Barría P (2010) Preliminary diet analysis of the blue shark Prionace glauca in the eastern South Pacific. Rev Biol Mar Oceanogr 45(1):745–749CrossRefGoogle Scholar
  123. Lordan C, Collins MA, Key LN, Brown ED (2001) The biology of the ommastrephid squid, Todarodes sagittatus, in the north-east Atlantic. J Mar Biol Assoc UK 81:299–306CrossRefGoogle Scholar
  124. Maldeniya R (1996) Food consumption of yellowfin tuna, Thunnus albacares, in Sri Lankan waters. Environ Biol Fishes 47:101–107.  https://doi.org/10.1007/bf00002384 CrossRefGoogle Scholar
  125. Markaida U, Sosa-Nishizaki O (2003) Food and feeding habits of jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) from the Gulf of California, Mexico. J Mar Biol Assoc UK 83:507–522CrossRefGoogle Scholar
  126. Markaida U, Hochberg FG (2005) Cephalopods in the Diet of Swordfish (Xiphias gladius) caught off the West Coast of Baja California, Mexico. Pac Sci 59(1):25–42CrossRefGoogle Scholar
  127. Marzloff M, Shin YJ, Tam J, Travers M, Bertrand A (2009) Trophic structure of the Peruvian ecosystem in 2000–2006: insights on the effects of management scenarios for the hake fishery using the IBM trophic model Osmose. J Mar Syst 75:290–304CrossRefGoogle Scholar
  128. Maurer RO, Bowman RE (1985) Food consumption of squids (Illex illecebrosus and Loligo pealei) off the northeastern United States. Northwest Atl Fish Organ Sci Counc Stud 9:117–124Google Scholar
  129. Mcintosh RR, Page B, Goldsworthy SD (2006) Dietary analysis of regurgitates and stomach samples from free-living Australian sea lions. Wildl Res 33:661–669CrossRefGoogle Scholar
  130. Meyer M, Smale MJ (1991) Predation patterns of demersal teleosts from the Cape south and west coasts of South Africa. 2. Benthic and epibenthic predators. S Afr J Mar Sci 11(1):409–442CrossRefGoogle Scholar
  131. Moltschaniwskyj N, Pecl G, Jackson G (2006) International symposium on cephalopod lifecycles: biology, management & conservation. FRDC final report 2005/307Google Scholar
  132. Morales-Zárate MV, Arreguín-Sánchez F, López-Martínez J, Lluch-Cota SE (2004) Ecosystem trophic structure and energy flux in the Northern Gulf of California, México. Ecol Model 174(4):331–345CrossRefGoogle Scholar
  133. Mori J, Kubodera T, Baba N (2001) Squid in the diet of northern fur seals, Callorhinus ursinus, caught in the western and central North Pacific Ocean. Fish Res 52:91–97CrossRefGoogle Scholar
  134. Mori M, Watanabe H, Hakamada T et al (2014) Development of an ecosystem model of the western North PacificGoogle Scholar
  135. Murillo C, Oyarzún C, Fernández I (2008) Latitudinal and temporal variation in the diet of Dissostichus eleginoides Smitt, 1898 (Perciformes: Nototheniidae) in deeo environments of the south and center coast of Chile. Gayana 72(1):94–101Google Scholar
  136. Mustafa MG (2003) Trophic model of the coastal ecosystem in the waters of Bangladesh, Bay of Bengal. World Fish Center Conference, vol 67, pp 263–280Google Scholar
  137. Neira S, Arancibia H (2013) Food web and fish stock changes in central Chile: comparing the roles of jumbo squid (Dosidicus gigas) predation, the environment, and fisheries. Deep Sea Res Part II Top Stud Oceanogr 95:103–112CrossRefGoogle Scholar
  138. Nesis KN (1997) Gonatid squids in the subarctic North Pacific: ecology, biogeography, niche diversity and role in the ecosystem. Adv Mar Biol 32:243–324CrossRefGoogle Scholar
  139. Nigmatullin CM (2004) Estimation of biomass, production and fishery potential of ommastrephid squids in the world ocean and problems of their fishery forecasting. In: International council for the exploration of the sea, conference and meetingGoogle Scholar
  140. Nigmatullin CM, Nesis KN, Arkhipkin AI (2001) A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fish Res 54(1):9–19CrossRefGoogle Scholar
  141. Nootmorn P, Sumontha M, Keereerut P, Jayasinghe RPPK, Jagannath N, Sinha MK (2008) Stomach content of the large pelagic fishes in the Bay of Bengal. IOTC-2008-WPEB-11, 13 ppGoogle Scholar
  142. O’Dor R (2002) Telemetered cephalopod energetics: swimming, soaring, and blimping 1. Integr Comp Biol 42:1065–1070CrossRefPubMedGoogle Scholar
  143. O’Dor RK, Webber DM (1986) The constraints on cephalopods: why squid aren’t fish. Can J Zool 64:1591–1605CrossRefGoogle Scholar
  144. O’Sullivan D, Cullen JM (1983) Food of the squid Nototodarus gouldi in Bass Strait. Aust J Mar Freshw Res 34(2):261–285CrossRefGoogle Scholar
  145. Ohizumi H, Isoda T, Kishiro T, Kato H (2003) Feeding habits of Baird’s beacked whale Berardius bairdii, in the western North Pacific and Sea of Okhotsk off Japan. Fish Sci 69:11–20CrossRefGoogle Scholar
  146. Okey TA (2001) A ‘Straw-Man’ Ecopath model of the Middle Atlantic Bight continental shelf, United States. Fish Centre Res Rep 9:151–166Google Scholar
  147. Olson RJ, Galván-Magaña F (2002) Food habits and consumption rates of common dolphinfish (Coryphaena hippurus) in the eastern Pacific Ocean. Fish Bull 100(2):279–298Google Scholar
  148. Olson RJ, Watters GM (2003) A model of the pelagic ecosystem in the eastern tropical Pacific Ocean. Interam Trop Tuna Comm Bull 22(3):1–89Google Scholar
  149. Pardo-Gandarillas MC, Duarte F, Chong J, Ibáñez CM (2007) Diet of juvenile blue sharks Prionace glauca (Linnaeus, 1758) (Carcharhiniformes: Carcharhinidae) in coastal waters off central-south Chile. Rev Biol Mar Oceanogr 42(3):365–369CrossRefGoogle Scholar
  150. Pardo-Gandarillas MC, Lohrmann KB, George-Nascimento M, Ibáñez CM (2014) Diet and parasites of the jumbo squid Dosidicus gigas in the Humboldt Current System. Molluscan Res 34(1):10–19.  https://doi.org/10.1080/13235818.2013.860870 CrossRefGoogle Scholar
  151. Parry MP (2006) Feeding behavior of two ommastrephid squids Ommastrephes bartramii and Sthenoteuthis oualaniensis off Hawaii. Mar Ecol Prog Ser 318:229–235CrossRefGoogle Scholar
  152. Pecl G (2001) Flexible reproductive strategies in tropical and temperate Sepioteuthis squids. Mar Biol 138:93–101CrossRefGoogle Scholar
  153. Pecl GT, Jackson GD (2008) The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Rev Fish Biol Fish 18(4):373–385CrossRefGoogle Scholar
  154. Pecl GT, Tracey SR, Semmens JM, Jackson GD (2006) Use of acoustic telemetry for spatial management of southern calamary Sepioteuthis australis, a highly mobile inshore squid species. Mar Ecol Prog Ser 328(October 2015):1–15CrossRefGoogle Scholar
  155. Pecl GT, Doubleday ZA, Danyushevsky L, Gilbert S, Moltschaniwskyj NA (2010) Transgenerational marking of cephalopods with an enriched barium isotope: a promising tool for empirically estimating post-hatching movement and population connectivity. ICES J Mar Sci 67(7):1372–1380Google Scholar
  156. Pedà C, Battaglia P, Scuderi A et al (2015) Cephalopod prey in the stomach contents of odontocete cetaceans stranded in the western Mediterranean Sea. Mar Biol Res 11(6):593–602CrossRefGoogle Scholar
  157. Pedersen SA, Zeller D (2001) A mass balance model for West Greenland marine ecosystem. Fish Centre Res Rep 9:111–127Google Scholar
  158. Perales-Raya C, Bartolomé A, García-Santamaría MT, Pascual-Alayón P, Almansa E (2010) Age estimation obtained from analysis of octopus (Octopus vulgaris Cuvier, 1797) beaks: improvements and comparisons. Fish Res 106:171–176.  https://doi.org/10.1016/j.fishres.2010.05.003 CrossRefGoogle Scholar
  159. Peristeraki P, Tserpes G, Lefkaditou E (2005) What cephalopod remains from Xiphias gladius stomachs can imply about predator–prey interactions in the Mediterranean Sea? J Fish Biol 67:549–554CrossRefGoogle Scholar
  160. Pethybridge H, Daley RK, Nichols PD (2011) Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J Exp Mar Biol Ecol 409:290–299.  https://doi.org/10.1016/j.jembe.2011.09.009 CrossRefGoogle Scholar
  161. Pethybridge H, Virtue P, Casper R et al (2012) Seasonal variations in diet of arrow squid (Nototodarus gouldi): stomach content and signature fatty acid analysis. J Mar Biol Assoc UK 92(1):1–10CrossRefGoogle Scholar
  162. Pethybridge HR, Nichols PD, Virtue P, Jackson GD (2013) The foraging ecology of an oceanic squid, Todarodes filippovae: the use of signature lipid profiling to monitor ecosystem change. Deep Res Part II Top Stud Oceanogr 95:119–128.  https://doi.org/10.1016/j.dsr2.2012.07.025 CrossRefGoogle Scholar
  163. Piatkowski U (2001) Special issue: impact of cephalopods in the food chain and their interactions with the environment: annex 1. Fish Res 52:141–142CrossRefGoogle Scholar
  164. Pierce G, Guerra A (1994) Stock assessment methods used for cephalopod fisheries. Fish Biol Northeast Atl Squid 21:255–285Google Scholar
  165. Polo-Silva C, Baigorrí-Santacruz Á, Galván-Magaña F, Grijalba-Bendeck M, Sanjuan-Muñoz A (2007) Food habits of thresher shark Alopias superciliosus (Lowe, 1839) in Ecuadorian Pacific. Rev Mar Biol Oceanogr 42(1):59–69CrossRefGoogle Scholar
  166. Pusineri C, Chancollon O, Ringelstein J, Ridoux V (2008) Feeding niche segregation among the Northeast Atlantic community of oceanic top predators. Mar Ecol Prog Ser 361:21–34CrossRefGoogle Scholar
  167. Quetglas A, Morales-Nin B (2004) Age and growth of the ommastrephid squid Todarodes sagittatus from the western Mediterranean Sea. J Mar Biol Assoc UK 84:421–426CrossRefGoogle Scholar
  168. Quetglas A, Alemany F, Carbonell A, Merella P, Sánchez P (1999) Diet of the European flying squid Todarodes sagittatus (Cephalopoda: Ommastrephidae) in the Balearic Sea (western Mediterranean). J Mar Biol Assoc UK 79:479–486CrossRefGoogle Scholar
  169. Quetglas A, Carbonell A, Sánchez P (2000) Demersal continental shelf and upper slope cephalopod assemblages from the Balearic Sea (North-Western Mediterranean). Biological aspects of some deep-sea species. Estuar Coast Shelf Sci 50:739–749CrossRefGoogle Scholar
  170. Quetglas A, de Mesa A, Ordines F, Grau A (2010) Life history of the deep-sea cephalopod family Histioteuthidae in the western Mediterranean. Deep Res Part I Oceanogr Res Pap 57:999–1008CrossRefGoogle Scholar
  171. Rao KS (1964) Food and feeding habits of fishes from trawl catches in the Bay of Bengal with observations on diurnal variation in the nature of the feed. Indian J Fish 11(1):277–314Google Scholar
  172. Rao KVS (1981) Food and feeding of lizard fishes (saurida spp.) from north western part of bay of bengal*. Indian J Fish 18(1):47–64Google Scholar
  173. Rasero M, González AF, Castro BG, Guerra A (1996) Predatory relationships of two sympatric squid, Todraopsis eblanae and Illex coindetii (Cephalopoda: Ommastrephidae) in Galician waters. J Mar Biol Assoc UK 76:73–87CrossRefGoogle Scholar
  174. Rocha F, Vega MA (2003) Overview of cephalopod fisheries off Chilean waters. Fish Res 60:151–159CrossRefGoogle Scholar
  175. Rocha F, Guerra A, González AF (2001) A review of reproductive strategies in cephalopods. Biol Rev Camb Philos Soc 76:291–304CrossRefPubMedGoogle Scholar
  176. Rodhouse PG, White MG (1995) Cephalopods occupy the ecological niche of the epipelagic fish in the Antarctic polar frontal zone. Biol Bull 189(2):77–80CrossRefPubMedGoogle Scholar
  177. Rodhouse PG, Nigmatullin CM (1996) Role as consumers. Philos Trans R Soc B Biol Sci 351:1003–1022CrossRefGoogle Scholar
  178. Rodhouse PG, Barton J, Hatfield EMC, Symon C (1995) Illex argentinus: life cycle, population structure, and fishery. In: ICES marine science symposia, vol 199, pp 425–432Google Scholar
  179. Rodhouse PG, Dawe EG, O’Dor RK (1998) Squid recruitment dynamics. FAO, RomeGoogle Scholar
  180. Rodhouse PGK, Pierce GJ, Nichols OC et al (2014) Environmental effects on cephalopod population dynamics: implications for management of fisheries. In: Vidal E (ed) Advances in cephalopod science: biology, ecology, cultivation and fisheries. Elsevier, Amsterdam, pp 99–233CrossRefGoogle Scholar
  181. Rogers PJ, Huveneers C, Page B et al (2012) A quantitative comparison of the diets of sympatric pelagic sharks in gulf and shelf ecosystem off southern Australia. ICES J Mar Sci 68(8):1382–1393CrossRefGoogle Scholar
  182. Rohit P, Syda Rao G, Rammohan K (2010) Feeding strategies and diet composition of yellowfin tuna Thunnus albacares (Bonnaterre, 1788) caught along Andhra Pradesh, east coast of India. Indian J. Fish 57(4):13–19Google Scholar
  183. Roper CFE, Shea EK (2013) Unanswered questions about the giant squid Architeuthis (Architeuthidae) illustrate our incomplete knowledge of coleoid cephalopods. Am Malacol Bull 31(1):109–122.  https://doi.org/10.4003/006.031.0104 CrossRefGoogle Scholar
  184. Roper CFE, Sweeney MJ, Nauen CE (2005) Cephalopods of the world. FAO Species Cat 3:3–227Google Scholar
  185. Rosas-Alayola J, Hernández-Herrera A, Galvan-Magaña F, Andres Abitia-Cárdenas L, Muhlia-Melo AF (2002) Diet composition of sailfish (Istiophorus platypterus) from the southern Gulf of California, Mexico. Fish Res 57:185–195CrossRefGoogle Scholar
  186. Rosas-Luis R, Salinas-Zavala CA, Koch V, Luna PDM, Morales-Zárate MV (2008) Importance of jumbo squid Dosidicus gigas (Orbigny, 1835) in the pelagic ecosystem of the central Gulf of California. Ecol Model 218:149–161CrossRefGoogle Scholar
  187. Rosas-Luis R, Tafur-Jimenez R, Alegre-Norza AR et al (2011) Trophic relationships between the jumbo squid (Dosidicus gigas) and the lightfish (Vinciguerria lucetia) in the Humboldt Current System off Peru. Sci Mar 75(3):549–557CrossRefGoogle Scholar
  188. Ruiz-Cooley RI, Gendron D, Aguiga S, Mesnick S, Carriquiry JD (2004) Trophic relationships between sperm whales and jumbo squid using stable isotopes of C and N. Mar Ecol Prog Ser 277:275–283CrossRefGoogle Scholar
  189. Ruiz-Cooley RI, Markaida U, Gendron D, Aguíñiga S (2006) Stable isotopes in jumbo squid (Dosidicus gigas) beaks to estimate its trophic position: comparison between stomach contents and stable isotopes. J Mar Biol Assoc UK 86(02):437CrossRefGoogle Scholar
  190. Salman A (2004) The role of cephalopods in the diet of swordfish (Xiphias gladius Linnaeus, 1758) in the Aegean Sea (eastern Mediterranean). Bull Mar Sci 74(1):21–29Google Scholar
  191. Sánchez F, Olaso I (2004) Effects of fisheries on the Cantabrian Sea shelf ecosystem. Ecol Model 172:151–174CrossRefGoogle Scholar
  192. Santos RA, Haimovici M (1997) Food and feeding of the short-finned squid Illex argentinus (Cephalopoda: Ommastrephidae) off southern Brazil. Fish Res 33:139–147CrossRefGoogle Scholar
  193. Santos RA, Haimovici M (1998) Trophic relationships of the long-finned squid Loligo sanpaulensis on the southern Brazilian shelf. S Afr J Mar Sci Tydskr Vir Seewetenskap 20:81–91CrossRefGoogle Scholar
  194. Santos RA, Haimovici M (2002) Cephalopods in the trophic relations off southern Brazil. Bull Mar Sci 71(2):753–770Google Scholar
  195. Sauer WHH, Lipiński MR (1991) Food of squid Loligo vulgaris reynaudii (Cephalopoda: Loliginidae) on their spawning grounds off the Eastern Cape, South Africa. S Afr J Mar Sci 10(1):193–201CrossRefGoogle Scholar
  196. Seitzinger SP, Giblin AE (1996) Estimating denitrification in North Atlantic continental shelf sediments. Biogeochemistry 35(1):235–260CrossRefGoogle Scholar
  197. Semmens JM, Pecl GT, Gillanders BM et al (2007) Approaches to resolving cephalopod movement and migration patterns. Rev Fish Biol Fish 17:401–423CrossRefGoogle Scholar
  198. Shannon LJ, Jarre-Teichmann A (1999) Comparing models of trophic flows in the northern and southern Benguela upwelling systems during the 1980s. Fish Manag 16:527–540CrossRefGoogle Scholar
  199. Shannon LJ, Moloney CL, Jarre A, Field JG (2003) Trophic flows in the southern Benguela during the 1980s and 1990s. J Mar Syst 39(1–2):83–116CrossRefGoogle Scholar
  200. Smale MJ (1986) The feeding habits of six pelagic and predatory teleosts in eastern Cape coastal waters (South Africa). J Zool Lond 1:357–409CrossRefGoogle Scholar
  201. Smale MJ (1996) Cephalopods as prey. IV. Fishes. Philos Trans R Soc B Biol Sci 351:1067–1081CrossRefGoogle Scholar
  202. Smith MD (2013) ABACuS: modelling the southern Benguela ecosystem with the Atlantis frameworkGoogle Scholar
  203. Spitz J, Cherel Y, Bertin S et al (2011) Prey preferences among the community of deep-diving odontocetes from the Bay of Biscay, Northeast Atlantic. Deep Sea Res Part I Oceanogr Res Pap 58(3):273–282CrossRefGoogle Scholar
  204. Staudinger MD, Hanlon RT, Juanes F (2011) Primary and secondary defences of squid to cruising and ambush fish predators: variable tactics and their survival value. Anim Behav 81:585–594.  https://doi.org/10.1016/j.anbehav.2010.12.002 CrossRefGoogle Scholar
  205. Staudinger MD, Juanes F, Salmon B, Teffer AK (2013) The distribution, diversity, and importance of cephalopods in top predator diets from offshore habitats of the Northwest Atlantic Ocean. Deep Res Part II Top Stud Oceanogr 95:182–192.  https://doi.org/10.1016/j.dsr2.2012.06.004 CrossRefGoogle Scholar
  206. Steenbeek J, Coll M, Gurney L et al (2013) Bridging the gap between ecosystem modelling tools and geographic information systems: driving a food web model with external spatial–temporal data. Ecol Model 263:139–151CrossRefGoogle Scholar
  207. Stergiou KI, Karpouzi VS (2002) Feeding habits and trophic levels of Mediterranean fish. Rev Fish Biol Fish 11(3):217–254CrossRefGoogle Scholar
  208. Stillwell CE, Kohler NE (1982) Food, feeding habits, and estimates of daily ration of the shortfin mako (Isurus oxyrinchus) in the Northwest Atlantic. Can J Fish Aquat Sci 39:407–414CrossRefGoogle Scholar
  209. Takai N, Onaka S, Ikeda Y et al (2000) Geographical variations in carbon and nitrogen stable isotope ratios in squid. J Mar Biol Assoc UK 80:675–684CrossRefGoogle Scholar
  210. Tam J, Taylor MH, Blaskovic V et al (2008) Trophic modeling of the Northern Humboldt Current Ecosystem, part I: comparing trophic linkages under La Niña and El Niño conditions. Prog Oceanogr 79(2–4):352–365CrossRefGoogle Scholar
  211. Taylor MH, Tam J, Blaskovic V et al (2008) Trophic modeling of the Northern Humboldt Current Ecosystem, part II: elucidating ecosystem dynamics from 1995 to 2004 with a focus on the impact of ENSO. Prog Oceanogr 79:366–378.  https://doi.org/10.1016/j.pocean.2008.10.008 CrossRefGoogle Scholar
  212. Thomas H, Borges AV (2012) Biogeochemistry of coastal seas and continental shelves—including biogeochemistry during the International Polar Year. Estuar Coast Shelf Sci 100:1–2CrossRefGoogle Scholar
  213. Tittensor DP, Mora C, Jetz W et al (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101CrossRefPubMedGoogle Scholar
  214. Uchikawa K, Kidokoro H (2014) Feeding habits of juvenile Japanese common squid Todarodes pacificus: relationship between dietary shift and allometric growth. Fish Res 152:29–36CrossRefGoogle Scholar
  215. Ullah MH, Rashed-Un-Nabi M, Al-Mamun MA (2012) Trophic model of the coastal ecosystem of the Bay of Bengal using mass balance Ecopath model. Ecol Model 225:82–94CrossRefGoogle Scholar
  216. Uozomi Y, Koshida S, Kotoda S (1995) Maturation of arrow squids Nototodarus gouldi and N. sloanii with age in New Zealand waters. Fish Sci 61(4):559–565CrossRefGoogle Scholar
  217. Van Heukelem WF (1976) Growth, bioenergetics and life-span of Octopus cynea and Octopus maya Google Scholar
  218. Velasco G, Castello JP (2005) An ecotrophic model of southern Brazil continental shelf and fisheries scenarios for Engraulis anchoita (Pisces, Engraulididae). Atlântica 27(1):59–68Google Scholar
  219. Velasco F, Olaso I, Sánchez F (2001) The role of cephalopods as forage for the demersal fish community in the southern Bay of Biscay. Fish Res 52:65–77CrossRefGoogle Scholar
  220. Vidal EAG, Villanueva R, Andrade JP et al (2014) Cephalopod culture: current status of main biological models and research priorities. Adv Mar Biol 67:1–198CrossRefPubMedGoogle Scholar
  221. Voss GL (1967) The biology and bathymetric distribution of deep-sea cephalopods. Stud Trop Oceanogr 5:511–535Google Scholar
  222. Watanabe H, Kubodera T, Kawahara S (2003) Feeding habits of Pacific pomfret Brama japonica in the transition zone of the central North Pacific. Fish Sci 69:269–276CrossRefGoogle Scholar
  223. Watanabe H, Kubodera T, Masuda S, Kawahara S (2004a) Feeding habits of albacore Thunnus alalunga in the transition region of the central North Pacific. Fish Sci 70:573–579CrossRefGoogle Scholar
  224. Watanabe H, Kubodera T, Ichii T, Kawahara S (2004b) Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific. Mar Ecol Prog Ser 266:173–184CrossRefGoogle Scholar
  225. Watanabe H, Kubodera T, Moku M, Kawaguchi K (2006) Diel vertical migration of squid in the warm core ring and cold water masses in the transition region of the western North Pacific. Mar Ecol Prog Ser 315:187–197CrossRefGoogle Scholar
  226. Watson RA, Nowara GB, Tracey SR et al (2013) Ecosystem model of Tasmanian waters explores impacts of climate-change induced changes in primary productivity. Ecol Model 264:115–129.  https://doi.org/10.1016/j.ecolmodel.2012.05.008 CrossRefGoogle Scholar
  227. Wormuth JH, Roper CFE (1983) Quantitative sampling of oceanic cephalopods by nets: Problems and recomendations. Biol Oceanogr 2(2–4):357–377Google Scholar
  228. Yoder JA, Atkinson LP, Stephen Bishop S, Hofmann EE, Lee TN (1983) Effect of upwelling on phytoplankton productivity of the outer southeastern United States continental shelf. Cont Shelf Res 1(4):385–404CrossRefGoogle Scholar
  229. Young JW, Lamb TD, Le D, Bradford RW, Whitelaw AW (1997) Feeding ecology and interannual variations in diet of Southern Bluefin Tuna, Thunnus maccoyii, in relation to coastal and oceanic waters off Eastern Tasmania, Australia. Environ Biol Fishes 50(3):275–291CrossRefGoogle Scholar
  230. Young JW, Bradford R, Lamb TD et al (2001) Yellowfin tuna (Thunnus albacares) aggregations along the shelf break off south-eastern Australia: links between inshore and offshore processes. Mar Freshw Res 52:463–474CrossRefGoogle Scholar
  231. Young JW, Lansdell MJ, Campbell RA et al (2010) Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Mar Biol 157:2347–2368CrossRefGoogle Scholar
  232. Young JW, Olson RJ, Rodhouse PGK (2013) The role of squids in pelagic ecosystems: an overview. Deep Res Part II Top Stud Oceanogr 95:3–6CrossRefGoogle Scholar
  233. Zeidberg LD, Robison BH (2007) Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc Natl Acad Sci USA 104(31):12948–12950CrossRefPubMedGoogle Scholar
  234. Zhang CI, Lee JB, Seo YI, Yoon SC, Kim S (2004) Variations in the abundance of fisheries resources and ecosystem structure in the Japan/East Sea. Prog Oceanogr 61(2–4):245–265CrossRefGoogle Scholar
  235. Zhang CI, Yoon SC, Lee JB (2007) Effects of the 1988/89 climatic regime shift on the structure and function of the southwestern Japan/East Sea ecosystem. J Mar Syst 67(3–4):225–235CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia
  2. 2.Commonwealth Scientific and Industrial Research OrganizationHobartAustralia

Personalised recommendations