Advertisement

Reviews in Fish Biology and Fisheries

, Volume 28, Issue 4, pp 825–838 | Cite as

The evolution of lamprey (Petromyzontida) life history and the origin of metamorphosis

  • Thomas M. Evans
  • Philippe Janvier
  • Margaret F. Docker
Reviews

Abstract

Modern lampreys (Petromyzontiformes) are one of two lineages of surviving jawless fishes (agnathans), and are thus of critical importance to understanding the evolution of the vertebrates. Although their fossil record is meager, it appears they have remained morphologically conserved for at least 360 million years, but the origin of their multi-stage life history is unclear. Unlike hagfishes, the other extant group of jawless fishes, which exhibit direct development, all modern lampreys possess a complex life cycle which includes a long-lived freshwater larval (or ammocoete) period, followed by a true metamorphosis into a sexually-immature juvenile and then mature adult which differ dramatically in their morphology and ecology from the larva. Because of their basal position, it is critical to understand when the extant lamprey life history evolved, and if such a life history was present in the last common ancestor of agnathans and gnathostomes. Recent discoveries in paleontology, genomic analyses, and developmental biology are providing insights into this problem. The current review synthesizes these findings and concludes that the ancestral lamprey life cycle followed a direct development. We suggest that the larval period was short and relatively limited if present at all, but that the juvenile included modern larval traits; over the course of evolution, differential selection pressures throughout the lifetime produced distinct larval and juvenile/adult periods. Each period required the dramatically different morphologies seen in modern lampreys, ultimately requiring a true metamorphosis to accommodate the large changes in the body plan and to maximize the efficiency of each life period. As a result, modern lamprey life histories are a patchwork of ancestral and derived characters.

Keywords

Basal vertebrate Heterochrony Life history Metamorphosis 

Notes

Acknowledgements

We thank the editor and two reviewers for helpful comments on an earlier draft which improved the manuscript.

References

  1. Bardack D, Zangerl R (1968) First fossil lamprey: a record from the Pennsylvanian of Illinois. Science 162:1265–1267.  https://doi.org/10.1126/science.162.3859.1265 CrossRefPubMedGoogle Scholar
  2. Beamish FWH (1980a) Biology of the North American anadromous sea lamprey, Petromyzon marinus. Can J Fish Aquat Sci 37:1924–1943.  https://doi.org/10.1139/f80-233 CrossRefGoogle Scholar
  3. Beamish RJ (1980b) Adult biology of the River Lamprey (Lampetra ayresi) and the Pacific Lamprey (Lampetra tridentata) from the Pacific Coast of Canada. Can J Fish Aquat Sci 37:1906–1923.  https://doi.org/10.1139/f80-232 CrossRefGoogle Scholar
  4. Beamish RJ, Levings CD (1991) Abundance and freshwater migrations of the anadromous parasitic lamprey, Lampetra tridentata, in a tributary of the Fraser River, British Co. Can J Fish Aquat Sci 48:1250–1263.  https://doi.org/10.1139/f91-151 CrossRefGoogle Scholar
  5. Beamish FWH, Lowartz S (1996) Larval habitat of American brook lamprey. Can J Fish Aquat Sci 53:693–700.  https://doi.org/10.1139/f95-232 CrossRefGoogle Scholar
  6. Belles X (2011) Origin and evolution of insect metamorphosis. Encyclopedia of life sciences. Wiley, ChichesterGoogle Scholar
  7. Bence JR, Bergstedt RA, Christie GC, Cochran PA, Ebener MP, Koonce JF, Rutter MA, Swink WD (2003) Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes. J Gt Lakes Res 29(Supplement 1):253–282.  https://doi.org/10.1016/S0380-1330(03)70493-6 CrossRefGoogle Scholar
  8. Bergstedt RA, Schneider CP (1988) Assessment of sea lamprey (Petromyzon marinus) predation by recovery of dead lake trout (Salvelinus namaycush) from Lake Ontario, 1982–1985. Can J Fish Aquat Sci 45:1406–1410.  https://doi.org/10.1139/f88-164 CrossRefGoogle Scholar
  9. Bergstedt RA, Swink WD (1995) Seasonal growth and duration of the parasitic life stage of the landlocked sea lamprey (Petromyzon marinus). Can J Fish Aquat Sci 52:1257–1264.  https://doi.org/10.1139/f95-122 CrossRefGoogle Scholar
  10. Bird DJ, Potter IC (1979) Metamorphosis in the paired species of lampreys, Lampetra fluviatilis (L.) and Lampetra planeri (Bloch): 2. Quantitative data for body proportions, weights, lengths and sex ratios. Zool J Linn Soc 65:145–160.  https://doi.org/10.1111/j.1096-3642.1979.tb01087.x CrossRefGoogle Scholar
  11. Bird DJ, Potter IC (1981) Proximate body composition of the larval, metamorphosing and downstream migrant stages in the life cycle of the Southern Hemisphere lamprey, Geotria australis. Environ Biol Fishes 6:285–297.  https://doi.org/10.1007/BF00005758 CrossRefGoogle Scholar
  12. Bird DJ, Potter IC, Hardisty MW, Baker BI (1994) Morphology, body size and behavior of recently-metamorphosed sea lampreys, Petromyzon marinus, from the lower River Severn, and their relevance to the onset of parasitic feeding. J Fish Biol 44:67–74.  https://doi.org/10.1111/j.1095-8649.1994.tb01586.x CrossRefGoogle Scholar
  13. Callery EM, Hung F, Elinson RP (2001) Frogs without polliwogs: evolution of anuran direct development. BioEssays 23:233–241.  https://doi.org/10.1002/1521-1878(200103)23:3%3c233:AID-BIES1033%3e3.0.CO;2-Q CrossRefPubMedGoogle Scholar
  14. Chang M, Zhang J, Miao D (2006) A lamprey from the Cretaceous Jehol biota of China. Nature 441:972–974.  https://doi.org/10.1073/pnas.1415716111 CrossRefPubMedGoogle Scholar
  15. Chang M, Wu F, Miao D, Zhang J (2014) Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle. Proc Natl Acad Sci 111:15486–15490CrossRefGoogle Scholar
  16. Cochran PA (2014) Field and laboratory observations on the ecology and behavior of the chestnut lamprey Ichthyomyzon castaneus. J Freshw Ecol 29:491–505.  https://doi.org/10.1080/02705060.2014.910477 CrossRefGoogle Scholar
  17. Dawson HA, Quintella BR, Almeida PR, Treble AJ, Jolley JC (2015) The ecology of larval and metamorphosing lampreys. In: Docker MF (ed) Lampreys: biology, conservation and control. Springer, New York, pp 75–138Google Scholar
  18. Derosier A, Jones M, Scribner K (2007) Dispersal of sea lamprey larvae during early life: relevance for recruitment dynamics. Environ Biol Fishes 78:271–284.  https://doi.org/10.1007/s10641-006-9095-3 CrossRefGoogle Scholar
  19. Docker MF (2009) A review of the evolution of nonparasitism in lampreys and an update of the paired species concept. In: Brown L, Chase S, Mesa M, Beamish R, Moyle PB (eds) Biology, management, and conservation of lampreys in North America. American Fisheries Society, Bethesda, pp 71–114Google Scholar
  20. Docker MF, Beamish FWH (1994) Age, growth, and sex ratio among populations of least brook lamprey, Lampetra aepyptera, larvae: an argument for environmental sex determination. Environ Biol Fishes 41:191–205.  https://doi.org/10.1007/BF02197844 CrossRefGoogle Scholar
  21. Docker MF, Hume JB, Clemens BJ (2015) Introduction: a surfeit of lampreys. In: Docker MF (ed) Lampreys: biology, conservation and control. Springer, New York, pp 1–34Google Scholar
  22. Donoghue PCJ, Keating JN (2014) Early vertebrate evolution. Palaeontology 57:879–893.  https://doi.org/10.1111/pala.12125 CrossRefGoogle Scholar
  23. Engel MS (2015) Insect evolution. Curr Biol 25:R868–R872.  https://doi.org/10.1016/j.cub.2015.07.059 CrossRefPubMedGoogle Scholar
  24. Evans TM (2017) Measuring the growth rate in three populations of larval lampreys with mark-recapture techniques. Trans Am Fish Soc 146:147–159.  https://doi.org/10.1080/00028487.2016.1249292 CrossRefGoogle Scholar
  25. Evans TM, Bauer JE (2016a) Identification of the nutritional resources of larval Sea Lamprey in two Great Lakes tributaries using stable isotopes. J Gt Lakes Res 42:99–107.  https://doi.org/10.1016/j.jglr.2015.11.010 CrossRefGoogle Scholar
  26. Evans TM, Bauer JE (2016b) Using stable isotopes and C:N ratios to examine the life-history strategies and nutritional sources of larval lampreys. J Fish Biol 88:638–654.  https://doi.org/10.1111/jfb.12858 CrossRefPubMedGoogle Scholar
  27. Fernholm B (1974) Diurnal variations in the behavior of the hagfish Eptatretus burger. Mar Biol 27:351–356.  https://doi.org/10.1007/BF00394371 CrossRefGoogle Scholar
  28. Gabbott SE, Donoghue PCJ, Sansom RS, Vinther J, Dolocan A, Purnell MA (2016) Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye. Proc R Soc B Biol 278:1150–1157.  https://doi.org/10.1098/rspb.2016.1151 CrossRefGoogle Scholar
  29. Gess RW, Coates MI, Rubidge BS (2006) A lamprey from the Devonian period of South Africa. Nature 443:981–984.  https://doi.org/10.1038/nature05150 CrossRefPubMedGoogle Scholar
  30. Gill HS, Renaud CB, Chapleau F, Mayden RL, Potter IC (2003) Phylogeny of living parasitic lampreys (Petromyzontiformes) based on morphological data. Copeia 4:687–703.  https://doi.org/10.1643/IA02-085.1 CrossRefGoogle Scholar
  31. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New YorkGoogle Scholar
  32. Hall JD (1963) An ecological study of chestnut lamprey, Ichthyomyzon castaneus Girard, in the Manistee River, Michigan. Dissertation, University of MichiganGoogle Scholar
  33. Hardisty MW (2011) Lampreys: life without jaws, 2nd edn. Forrest Text, CeredigionGoogle Scholar
  34. Hardisty MW, Potter IC (1971) The general biology of adult lampreys. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 1. Academic Press, New York, pp 127–206Google Scholar
  35. Haug JT, Haug C (2013) An unusual fossil larva, the ontogeny of achelatan lobsters, and the evolution of metamorphosis. Bull Geosci 88:195–206.  https://doi.org/10.3140/bull.geosci.1374 CrossRefGoogle Scholar
  36. Haug JT, Haug C, Garwood RJ (2016) Evolution of insect wings and development—new details from Palaeozoic nymphs. Biol Rev 91:53–69.  https://doi.org/10.1111/brv.12159 CrossRefPubMedGoogle Scholar
  37. Heimberg AM, Cowper-Sal·lari R, Sémon M, Donoghue PCJ, Peterson KJ (2010) MicroRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci 107:19379–19383.  https://doi.org/10.1073/pnas.1010350107 CrossRefPubMedGoogle Scholar
  38. Janvier P (1981) The phylogeny of the Craniata, with particular reference to the significance of fossil “agnathans”. J Vertebr Paleontol 1:121–159CrossRefGoogle Scholar
  39. Janvier P (1996) The dawn of the vertebrates: characters versus common ascent in the rise of current vertebrate phylogenies. Palaeontology 39:259–287Google Scholar
  40. Janvier P (2008) Early jawless vertebrates and cyclostome origins. Zoolog Sci 25:1045–1056.  https://doi.org/10.2108/zsj.25.1045 CrossRefPubMedGoogle Scholar
  41. Janvier P (2015) Facts and fancies about early fossil chordates and vertebrates. Nature 520:483–489.  https://doi.org/10.1038/nature14437 CrossRefPubMedGoogle Scholar
  42. Janvier P, Arsenault M (2007) The anatomy of Euphanerops longaevus Woodward, 1900, an anaspid-like jawless vertebrate from the Upper Devonian of Miguasha, Quebec, Canada. Geodiversitas 29:143–216Google Scholar
  43. Johnson CK, Voss SR (2013) Salamander paedomorphosis: linking thyroid hormone to life history and life cycle evolution. In: Yon-Bo S (ed) Animal metamorphosis. Academic Press, Burlington, pp 229–258CrossRefGoogle Scholar
  44. Johnson NS, Buchinger TJ, Li W (2015) Reproductive ecology of lampreys. In: Docker MF (ed) Lampreys: biology, conservation, and control. Springer, New York, pp 265–303Google Scholar
  45. Kearn GC (2004) Leeches, lice, and lampreys: a natural history of skin and gill parasites of fishes. Springer, NorwellGoogle Scholar
  46. Keating JN, Donoghue PCJ (2016) Histology and affinity of anaspids and the early evolution of the vertebrate dermal skeleton. Proc R Soc B Bio.  https://doi.org/10.1098/rspb.2015.2917 CrossRefGoogle Scholar
  47. Kucheryavyi AV, Savvaitova KA, Pavlov DS, Gruzdeva MA, Kuzishchin KV, Stanford JA (2007) Variations of life history strategy of the arctic lamprey Lethenteron camtschaticum from the Utkholok River (Western Kamchatka). J Ichthyol 47:37–52.  https://doi.org/10.1134/S0032945207010055 CrossRefGoogle Scholar
  48. Kuraku S, Kuratani S (2006) Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences. Zool Sci 23:1053–1064.  https://doi.org/10.2108/zsj.23.1053 CrossRefPubMedGoogle Scholar
  49. Lamb TD, Collin SP, Pugh EN Jr (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8:960–976.  https://doi.org/10.1038/nrn2283 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lang NJ, Roe KJ, Renaud CB, Gill HS, Potter IC, Freyhof J, Naseka AM, Cochran P, Peréz HE, Habit EM, Kuhajda BR, Neely DA, Reshetnikov YS, Salnikov VB, Stoumboudi MT, Mayden RL (2009) Novel relationships among lampreys (Petromyzontiformes) revealed by a taxonomically comprehensive molecular data set. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management, and conservation of lampreys in North America. American Fisheries Society, Bethesda, pp 41–55Google Scholar
  51. Løvtrup S (1977) The phylogeny of the Vertebrata. Wiley, New YorkGoogle Scholar
  52. Lowe DR, Beamish FWH, Potter IC (1973) Changes in the proximate body composition of the landlocked sea lamprey Petromyzon marinus (L.) during larval life and metamorphosis. J Fish Biol 5:673–682.  https://doi.org/10.1111/j.1095-8649.1973.tb04503.x CrossRefGoogle Scholar
  53. Lund R, Janvier P (1986) A second lamprey from the Lower Carboniferous (Namurian) of Bear Gulch, Montana (U.S.A.). Geobios 19:647–652.  https://doi.org/10.1016/S0016-6995(86)80061-4 CrossRefGoogle Scholar
  54. Macey DJ, Potter IC (1978) Lethal temperatures of ammocoetes of the Southern Hemisphere lamprey, Geotria australis Gray. Environ Biol Fishes 3:241–243.  https://doi.org/10.1007/BF00691950 CrossRefGoogle Scholar
  55. MacLeod N (2015) The great extinctions: What causes them and how they shape life. Firefly Books, New YorkGoogle Scholar
  56. Madenjian CP, Cochran PA, Bergstedt RA (2003) Seasonal patterns in growth, blood consumption, and effects on hosts by parasitic-phase sea lampreys in the Great Lakes: an individual-based model approach. J Gt Lakes Res 29(Supplement 1):332–346.  https://doi.org/10.1016/S0380-1330(03)70498-5 CrossRefGoogle Scholar
  57. Mallatt J (1984) Feeding ecology of the earliest vertebrates. Zool J Linn Soc 82:261–272.  https://doi.org/10.1111/j.1096-3642.1984.tb00643.x CrossRefGoogle Scholar
  58. Manzon RG, Youson JH, Holmes JA (2015) Lamprey metamorphosis. In: Docker MF (ed) Lampreys: biology, conservation and control. Springer, New York, pp 139–214Google Scholar
  59. Martini FH (1998) The ecology of hagfishes. In: Jørgensen JM, Lomholt JP, Weber RE, Malte H (eds) The biology of hagfishes. Springer, New York, pp 57–77CrossRefGoogle Scholar
  60. McMahon DP, Hayward A (2016) Why grow up? A perspective on insect strategies to avoid metamorphosis. Ecolog Entomol 41:505–515.  https://doi.org/10.1111/een.12313 CrossRefGoogle Scholar
  61. Morman RH (1987) Relationship of density to growth and metamorphosis of caged larval sea lampreys, Petromyzon marinus Linnaeus, in Michigan streams. J Fish Biol 30:173–181.  https://doi.org/10.1111/j.1095-8649.1987.tb05743.x CrossRefGoogle Scholar
  62. Moser ML, Almeida PR, Kemp PS, Sorensen PW (2015) Lamprey spawning migration. In: Docker MF (ed) Lampreys: biology, conservation and control. Springer, New York, pp 215–264Google Scholar
  63. Moyle PB, Cech JJ Jr (2011) Fishes: an introduction to ichthyology, 5th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  64. Murauskas JG, Orlov AM, Siwicke KA (2013) Relationships between the abundance of Pacific lamprey in the Columbia River and their common hosts in the marine environment. Trans Am Fish Soc 142:143–155.  https://doi.org/10.1080/00028487.2012.730113 CrossRefGoogle Scholar
  65. Murdoch SP, Docker MF, Beamish FWH (1992) Effect of density and individual variation on growth of sea lamprey (Petromyzon marinus) larvae in the laboratory. Can J Zool 70:184–188.  https://doi.org/10.1139/z92-027 CrossRefGoogle Scholar
  66. Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the world, 5th edn. Wiley, New YorkCrossRefGoogle Scholar
  67. Nichols OC, Tscherter UT (2011) Feeding of sea lampreys Petromyzon marinus on minke whales Balaenoptera acutorostrata in the St Lawrence Estuary, Canada. J Fish Biol 78:338–343.  https://doi.org/10.1111/j.1095-8649.2010.02842.x CrossRefPubMedGoogle Scholar
  68. O’Boyle R, Beamish FWH (1977) Growth and intermediary metabolism of larval and metamorphosing stages of the landlocked sea lamprey, Petromyzon marinus L. Environ Biol Fishes 2:103–120.  https://doi.org/10.1007/BF00005366 CrossRefGoogle Scholar
  69. Orlov A, Beamish R (2016) Jawless fishes of the world, vol 1. Cambridge Scholars Publishing, New CastleGoogle Scholar
  70. Ota KG, Fujimoto S, Oisi Y, Kuratani S (2011) Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nat Commun 2:1–6.  https://doi.org/10.1038/ncomms1355 CrossRefGoogle Scholar
  71. Ota KG, Fujimoto S, Oisi Y, Kuratani S (2013) Late development of hagfish vertebral elements. J Exp Zool B Mol Dev Evol 320:129–139.  https://doi.org/10.1002/jez.b.22489 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Penney D, Jepson JE (2014) Fossil insects: an introduction to palaeoentomology. Siri Scientific Press, ManchesterGoogle Scholar
  73. Potter IC (1980a) Ecology of larval and metamorphosing lampreys. Can J Fish Aquat Sci 37:1641–1657.  https://doi.org/10.1139/f80-212 CrossRefGoogle Scholar
  74. Potter IC (1980b) The Petromyzoniformes with particular reference to paired species. Can J Fish Aquat Sci 37:1595–1615.  https://doi.org/10.1139/f80-207 CrossRefGoogle Scholar
  75. Potter IC, Beamish FWH (1975) Lethal temperatures in ammocoetes of four species of lampreys. Acta Zoologica 56:85–91.  https://doi.org/10.1111/j.1463-6395.1975.tb00084.x CrossRefGoogle Scholar
  76. Potter IC, Hilliard RW (1987) A proposal for the functional and phylogenetic significance of differences in the dentition of lampreys (Agnatha: Petromyzontiformes). J Zool 212:713–737.  https://doi.org/10.1111/j.1469-7998.1987.tb05966.x CrossRefGoogle Scholar
  77. Potter IC, Gill HS, Renaud CB, Hanoucher D (2015) The taxonomy, phylogeny, distribution, of lampreys. In: Docker MF (ed) Lampreys: biology, conservation and control. Springer, New York, pp 35–73Google Scholar
  78. Quintella BR, Andrade NO, Espanhol R, Almeida PR (2005) The use of PIT telemetry to study movements of ammocoetes and metamorphosing sea lampreys in river beds. J Fish Biol 66:97–106.  https://doi.org/10.1111/j.0022-1112.2005.00584.x CrossRefGoogle Scholar
  79. Rainford JL, Hofreiter M, Nicholson DB, Mayhew PJ (2014) Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS ONE 9:e109085.  https://doi.org/10.1371/journal.pone.0109085 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Renaud C (2011) Lampreys of the world: an annotated and illustrated catalogue of lamprey species known to date. Food and Agriculture Organization, RomeGoogle Scholar
  81. Renaud CB, Gill HS, Potter IC (2009) Relationships between the diets and characteristics of the dentition, buccal glands and velar tentacles of the adults of the parasitic species of lamprey. J Zool 278:231–242.  https://doi.org/10.1111/j.1469-7998.2009.00571.x CrossRefGoogle Scholar
  82. Rohlfing K, Stuhlmann F, Docker MF, Burmester T (2016) Convergent evolution of hemoglobin switching in jawed and jawless vertebrates. BMC Evol Biol 16:1–9.  https://doi.org/10.1186/s12862-016-0597-0 CrossRefGoogle Scholar
  83. Rose CS (2014) The importance of cartilage to amphibian development and evolution. Int J Dev Biol 58:917–927.  https://doi.org/10.1387/ijdb.150053cr CrossRefPubMedGoogle Scholar
  84. Schoch RP (2009a) Evolution of life cycles in early amphibians. Annu Rev Earth Planet Sci 37:135–162.  https://doi.org/10.1146/annurev.earth.031208.100113 CrossRefGoogle Scholar
  85. Schoch RP (2009b) Life-cycle evolution as response to diverse lake habitats in Paleozoic amphibians. Evolution 63:2738–2749.  https://doi.org/10.1111/j.l558-5646.2009.0076.x CrossRefPubMedGoogle Scholar
  86. Schoch RP (2014) Life history evolution. In: Schoch RR (ed) Amphibian evolution: the life of early land vertebrates. Wiley, New York, pp 208–221CrossRefGoogle Scholar
  87. Schoch RP, Fröbisch NB (2006) Metamorphosis and neoteny: alternative pathways in an extinct amphibian clade. Evolution 60:1467–1475.  https://doi.org/10.1554/05-632.1 CrossRefPubMedGoogle Scholar
  88. Schwarze K, Campbell KL, Hankeln R, Storz JF, Hoffmann FG, Burmester T (2014) The globin gene repertoire of lampreys: convergent evolution of hemoglobin and myoglobin in jawed and jawless vertebrates. Mol Biol Evol 31:2708–2721.  https://doi.org/10.1093/molbev/msu216 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Shimeld SM, Donoghue PCJ (2012) Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 139:2091–2099.  https://doi.org/10.1242/dev.074716 CrossRefPubMedGoogle Scholar
  90. Shink KG (2017) Characterizing the diet and population structure of lampreys Lethenteron spp. using molecular techniques. Master’s thesis, University of Alaska FairbanksGoogle Scholar
  91. Shu DG, Luo HL, Morris SC, Zhang XL, Hu SX, Chen L, Han J, Zhu M, Li Y, Chen LZ (1999) Lower Cambrian vertebrates from south China. Nature 402:42–46.  https://doi.org/10.1038/46965 CrossRefGoogle Scholar
  92. Shu DG, Conway Morris S, Han J, Zhang ZF, Yasui K, Janvier P, Chen L, Zhang XL, Liu JN, Li Y, Liu HQ (2003) Head and backbone of the early Cambrian vertebrate Haikouichthys. Nature 421:526–529.  https://doi.org/10.1038/nature01264 CrossRefPubMedGoogle Scholar
  93. Silva S, Araújo MJ, Bao M, Mucientes G, Cobo F (2014) The haematophagous feeding stage of anadromous populations of sea lamprey Petromyzon marinus: low host selectivity and wide range of habitats. Hydrobiologia 734:187–199.  https://doi.org/10.1007/s1075 CrossRefGoogle Scholar
  94. Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, Morgan JR et al (2013) Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 45:415–421.  https://doi.org/10.1038/ng.2568 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Square T, Jandzik D, Romášek M, Cerny R, Medeiros DM (2017) The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Dev Biol 427:219–229.  https://doi.org/10.1016/j.ydbio.2016.11.014 CrossRefPubMedGoogle Scholar
  96. Sugiyama H, Goto A (2002) Habitat selection by larvae of a fluvial lamprey, Lethenteron reissneri, in a small stream and an experimental aquarium. Ichthyol Res 49:62–68.  https://doi.org/10.1007/s102280200 CrossRefGoogle Scholar
  97. Sutton TM, Bowen SH (1994) Significance of organic detritus in the diet of larval lampreys in the Great Lakes basin. Can J Fish Aquat Sci 51:2380–2387.  https://doi.org/10.1139/f94-239 CrossRefGoogle Scholar
  98. Suzuki DG, Grillner S (2018) The stepwise development of the lamprey visual system and its evolutionary implications. Biol Rev.  https://doi.org/10.1111/brv.12403 CrossRefPubMedGoogle Scholar
  99. Talabishka EM, Bogutskaya NG, Naseka AM (2012) Local migration and feeding habitats of Carpathian lamprey Eudontomyzon danfordi (Petromyzontes: Petromyzontidae) in Tisza River system (Danube drainage, Ukraine). Proc Zool Inst RAS 316:361–368.  https://doi.org/10.1134/S0032 CrossRefGoogle Scholar
  100. Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452.  https://doi.org/10.1038/46737 CrossRefPubMedGoogle Scholar
  101. Wallace MW, AvS Hood, Shuster A, Greig A, Planavsky NJ, Reed CP (2017) Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet Sci Lett 466(12):19.  https://doi.org/10.1016/j.epsi.2017.02.046 CrossRefGoogle Scholar
  102. Young RJ, Kelso JRM, Weise JG (1990) Occurrence, relative abundance, and size of landlocked sea lamprey (Petromyzon marinus) ammocoetes in relation to stream characteristics in the Great Lakes. Can J Fish Aquat Sci 47:1773–1778.  https://doi.org/10.1139/f90-201 CrossRefGoogle Scholar
  103. Youson JH (2004) The impact of environmental and hormonal cues on the evolution of fish metamorphosis. In: Hall BK, Pearson RD, Muller GB (eds) Environment, development, and evolution: towards a synthesis. Massachusetts Institute of Technology Press, Cambridge, pp 239–278Google Scholar
  104. Youson JH (2007) Peripheral endocrine glands. I. The gastroenteropancreatic endocrine system and the thyroid gland. In: McKenzie DJ, Farrell AP, Brauner CJ (eds) Primitive fishes. Academic Press, New York, pp 381–455.  https://doi.org/10.1016/S1546-5098(07)26008-X CrossRefGoogle Scholar
  105. Youson JH, Sower SA (2001) Theory on the evolutionary history of lamprey metamorphosis: role of reproductive and thyroid axes. Comp Biochem Physiol B Biochem Mol Biol 129:337–345.  https://doi.org/10.1016/S1096-4959(01)00341-4 CrossRefPubMedGoogle Scholar
  106. Zintzen V, Roberts CD, Anderson MJ, Stewart AL, Struthers CD, Harvey ES (2011) Hagfish predatory behavior and slime defense mechanism. Sci Rep.  https://doi.org/10.1038/srep00131 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Zintzen V, Rogers KM, Roberts CD, Stewart AL, Anderson MJ (2013) Hagfish feeding habits along a depth gradient inferred from stable isotopes. Mar Ecol Prog Ser 485:223–234.  https://doi.org/10.3354/meps10341 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Lake Ontario Biological StationOswegoUSA
  2. 2.CR2P-UMR7207 Muséum National d’Histoire NaturelleParisFrance
  3. 3.Department of Biological SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations