Advertisement

Reviews in Fish Biology and Fisheries

, Volume 28, Issue 4, pp 693–714 | Cite as

Biology, ecology and biogeography of the South American silver croaker, an important Neotropical fish species in South America

  • Jamile Queiroz-Sousa
  • Eduardo Meneguzzi Brambilla
  • James Raul Garcia-Ayala
  • Fabio Alexandre Travassos
  • Vanessa Salete Daga
  • André Andrian Padial
  • Jean Ricardo Simões Vitule
Reviews

Abstract

The South American silver croaker is a popular fish that has recently received substantial attention from scientists, mainly due to its importance as source of animal protein and as a key fisheries species. However, little is known about the conditions that explain its historical and current spatial distribution, both in its native habitat and where it is a successful invasive species. The aim of the present study was to explore the ecological information available for this species, to then critically examine ecological theories related to the conditions underpinning its success. To this end, an exhaustive literature search was conducted with the immediate aim of investigating whether the success of South American silver croaker was driven by species-climate or species–human interactions. The non-native populations were found to occupy climate niche spaces different from those observed in their native ranges. In addition, it was clear that humans played a role in facilitating the large-scale dispersion of silver croaker, and assisted as agents of impact driving the observed current and, probably, the future spatial distribution, which we can predict from our data and from the pattern of propagule pressure. Overall, the current biogeography of this species illustrates how the construction of dams, along with the introduction and stocking of non-native species, overfishing and other human activities can alter fish populations and assemblages. Such processes can reduce native species, increase the abundance and distribution of invasive species, as well as cause changes in life-history traits and genetic variability, all with long-term socioeconomic consequences.

Keywords

Anthropogenic impacts Climate impacts Conservation Fisheries management Invasive species Species distribution 

Notes

Acknowledgements

We thank MSc. V. M. Azevedo-Santos and Dr. J. A. Nienow as reviewers for shrewd comments, T. H. S. Pires, B. S. Barros, A. Galuch for Fig. 1a, Prof. G. Loubens for providing documents and the photo Fig. 1b–d, and F. M. Pelicice for the photo Fig. 1e–h. The authors acknowledge Eletronorte, which provided the data from its environmental monitoring program to be used for scientific purposes. This work was supported by the Fish Ecology and Biology Laboratory, Department of Morphology, Bioscience Institute of Botucatu headed by Prof. Edmir Daniel Carvalho (in memoriam). We are grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for constant financial support and research grants provided to JRSV (Process Numbers: 310850/2012-6, 303776/2015-3), and VSD (Process Number: 167382/2017-9).

Supplementary material

11160_2018_9526_MOESM1_ESM.doc (434 kb)
Additional Supporting Information found in the online version: Figure S1—Flow diagram of the systematic review methodology (adapted of Prisma 2009). Table S1—List of the previous studies of the South American silver croaker in Neotropical region. (DOC 434 kb)

References

  1. Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N et al (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58:403–414CrossRefGoogle Scholar
  2. Agosta SJ, Klemens JA (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol Lett 11:1123–1134.  https://doi.org/10.1111/j.1461-0248.2008.01237.x CrossRefPubMedGoogle Scholar
  3. Agostinho AA, Julio HF (1996) Ameaça ecológica: peixes de outras águas. Ciência hoje 21:36–45Google Scholar
  4. Agostinho AA, Julio HF Jr, Petrere M Jr (1994) Itaipu reservoir (Brazil): impacts of the impoundment on the fish fauna and fisheries. In: Cowx IG (ed) Rehabilitation of freshwater fisheries. Fishing News Books, Oxford, pp 171–184Google Scholar
  5. Agostinho AA, Matsuura Y, Okada EK, Nakatani K (1995) The catfish, Rhinelepis aspera (Teleostei; Loricariidae), in the Guaíra region of the Paraná River: an example of population estimation from catch-effort and tagging data when emigration and immigration are high. Fish Res 23:333–344.  https://doi.org/10.1016/0165-7836(94)00347-Y CrossRefGoogle Scholar
  6. Agostinho AA, Gomes LC, Veríssimo S, Okada E (2004) Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Rev Fish Biol Fish 14:11–19CrossRefGoogle Scholar
  7. Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz J Biol 68:1119–1132.  https://doi.org/10.1590/S1519-69842008000500019 CrossRefPubMedGoogle Scholar
  8. Agostinho AA, Pelicice FM, Gomes LC, Júlio HF Jr (2010) Reservoir fish stocking: when one plus one may be less than two. Nat Conservação 8(2):103–111CrossRefGoogle Scholar
  9. Agostinho AA, Gomes LC, Santos NC, Ortega JC, Pelicice FM (2016) Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fish Res 173:26–36.  https://doi.org/10.1016/j.fishres.2015.04.006 CrossRefGoogle Scholar
  10. Al-Shorbaji F, Roche B, Gozlan R, Britton R, Andreou D (2016) The consequences of reservoir host eradication on disease epidemiology in animal communities. Emerg Microbes Infect 5:e46.  https://doi.org/10.1038/emi.2016.46 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Azevedo-Santos VM, Rigolin-Sá O, Pelicice FM (2011) Growing, losing or introducing? Cage aquaculture as a vector for the introduction of non-native fish in Furnas Reservoir, Minas Gerais, Brazil. Neotrop Ichthyol 9:915–919.  https://doi.org/10.1590/S1679-62252011000400024 CrossRefGoogle Scholar
  12. Azevedo-Santos VM, Pelicice FM, Lima-Junior DP, Magalhães AL, Orsi ML, Vitule JRS et al (2015) How to avoid fish introductions in Brazil: education and information as alternatives. Nat Conservação 13:123–132.  https://doi.org/10.1016/j.ncon.2015.06.002 CrossRefGoogle Scholar
  13. Bajer PG, Cross TK, Lechelt JD, Chizinski CJ, Weber MJ, Sorensen PW (2015) Across ecoregion analysis suggests a hierarchy of ecological filters that regulate recruitment of a globally invasive fish. Divers Distrib 21(5):500–510CrossRefGoogle Scholar
  14. Barbosa ND, Rocha RM, Frédou FL (2012) The reproductive biology of Plagioscion squamosissimus (Heckel, 1840) in the Pará River estuary (Amazon Estuary). J Appl Ichthyol 28(5):800–805CrossRefGoogle Scholar
  15. Barros LC, Santos U, Zanuncio JC, Dergam JA (2012) Plagioscion squamosissimus (Sciaenidae) and Parachromis managuensis (Cichlidae): a threat to native fishes of the Doce River in Minas Gerais, Brazil. PLoS ONE 7:e39138.  https://doi.org/10.1371/journal.pone.0039138 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bates D (2007) lme4: linear mixed-effects models using S4 classes. R package version 0.9975-13Google Scholar
  17. Bellard C, Leclerc C, Leroy B, Bakkenes M, Veloz S, Thuiller W, Courchamp F (2014) Vulnerability of biodiversity hotspots to global change. Glob Ecol Biogeogr 23:1376–1386CrossRefGoogle Scholar
  18. Benedito-Cecílio E, Agostinho AA, Gomes LC (1997) Estrutura das populações de peixes do reservatório de Segredo. In: Agostinho AA (ed) Reservatório de Segredo: bases ecológicas para o manejo. EDUEM, Maringá, pp 113–139Google Scholar
  19. Bennemann ST, Casatti L, Oliveira DC (2006) Alimentação de peixes: proposta para análise de itens registrados em conteúdos gástricos. Biota Neotrop 6:1–8.  https://doi.org/10.1590/S1676-06032006000200013 CrossRefGoogle Scholar
  20. Bezerra LAV, Angelini R, Vitule JRS, Coll M, Sánchez-Botero JI (2017) Food web changes associated with drought and invasive species in a tropical semiarid reservoir. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3432-8 CrossRefGoogle Scholar
  21. Bialetzki A, Nakatani K, Sanches PV, Baumgartner G (2004) Eggs and larvae of the ‘curvina’ Plagioscion squamosissimus (Heckel, 1840) (Osteichthyes, Sciaenidae) in the Baía River, Mato Grosso do Sul State, Brazil. J Plankton Res 26:1327–1336.  https://doi.org/10.1093/plankt/fbh123 CrossRefGoogle Scholar
  22. Boeger WA, Kritsky DC (2003) Parasites, fossils and geologic history: historical biogeography of the South American freshwater croakers, Plagioscion spp. (Teleostei, Sciaenidae). Zool Scr 32:3–11.  https://doi.org/10.1046/j.1463-6409.2003.00109.x CrossRefGoogle Scholar
  23. Boucher DH (1985) The idea of mutualism, past and future. In: Boucher DH (ed) The biology of mutualism: ecology and evolution. Oxford University Press, New York, pp 1–27Google Scholar
  24. Braga FDS (1997) Biologia reprodutiva de Plagioscion squamosissimus (Teleostei, Sciaenidae) na represa de Barra Bonita, rio Piracicaba (SP). Rev Unimar 19(2):447–460Google Scholar
  25. Braga RR, Gómez-Aparicio L, Heger T, Vitule JRS, Jeschke JM (2017) Structuring evidence for invasional meltdown: broad support but with biases and gaps. Biol Invasions.  https://doi.org/10.1007/s10530-017-1582-2 CrossRefGoogle Scholar
  26. Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709.  https://doi.org/10.1111/j.1461-0248.2007.01060.x CrossRefGoogle Scholar
  27. Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125.  https://doi.org/10.1016/S0169-5347(02)00045-9 CrossRefGoogle Scholar
  28. Caplat P, Cheptou P-O, Diez J, Guisan A, Larson BM, Macdougall AS et al (2013) Movement, impacts and management of plant distributions in response to climate change: insights from invasions. Oikos 122:1265–1274.  https://doi.org/10.1111/j.1600-0706.2013.00430.x CrossRefGoogle Scholar
  29. Carim KJ, Vindenes Y, Eby LA, Barfoot C, Vøllestad LA (2017) Life history, population viability, and the potential for local adaptation in isolated trout populations. Glob Ecol Conserv 10:93–102.  https://doi.org/10.1016/j.gecco.2017.02.001 CrossRefGoogle Scholar
  30. Carnelós RC, Benedito-Cecilio E (2002) Reproductive strategies of Plagioscion squamosissimus Heckel, 1840 (Osteichthyes Sciaenidae) in the Itaipu Reservoir, Brazil. Braz Arch Biol Technol 45(3):317–324CrossRefGoogle Scholar
  31. Carolsfeld J, Harvey B, Baer A, Ross C (2003) Migratory fishes of South America: biology, social importance and conservation status. World Fisheries Trust, VictoriaGoogle Scholar
  32. Casatti L (2003) Sciaenidae (Drums or croakers). In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Checklist of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, pp 599–602Google Scholar
  33. Cassey P, Delean S, Lockwood JL, Sadowski JS, Blackburn TM (2018) Dissecting the null model for biological invasions: a meta-analysis of the propagule pressure effect. PLoS Biol 16(4):e2005987.  https://doi.org/10.1371/journal.pbio.2005987 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cella-Ribeiro A, Torrente-Vilara G, Lima-Filho JA, Doria CRC (2017) Ecologia e Biologia de peixes do Rio Madeira. EDUFRO, Porto VelhoGoogle Scholar
  35. Center for International Earth Science Information Network (CIESIN), Centro Internacional de Agricultura Tropical (CIAT), and Socioeconomic Data and Applications Center (SEDAC) (2017) Gridded population of the world version 3 (GPWv3): population density grids. Columbia University. http://sedac.ciesin.columbia.edu/gpw. Accessed 15 Mar 2017
  36. Chacon JD, Silva JWB (1971) Alimentação da pescada-do-piauí, Plagioscion squamosissimus (Heckel). Bol Soc Cear Agron 12:41–44Google Scholar
  37. Cintra IHA, Flexa CE, da Silva MB, de Araújo MVLF, de Araújo Silva KC (2014) A pesca no reservatório da usina hidrelétrica de Tucuruí, Amazônia, Brasil. Acta Fish Aquat Res 1(1):48–57Google Scholar
  38. Clavero M (2013) Biodiversity in heavily modified waterbodies: native and introduced fish in Iberian reservoirs. Freshw Biol 58:1190–1201.  https://doi.org/10.1111/fwb.12120 CrossRefGoogle Scholar
  39. Clavero M, García-Berthou E (2006) Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian Peninsula. Ecol Appl 16:2313–2324.  https://doi.org/10.1890/1051-0761 CrossRefPubMedGoogle Scholar
  40. Clavero M, Hermoso V (2011) Reservoirs promote the taxonomic homogenization of fish communities within river basins. Biodivers Conserv 20:41–57CrossRefGoogle Scholar
  41. Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733.  https://doi.org/10.1111/j.1461-0248.2004.00616.x CrossRefGoogle Scholar
  42. Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037CrossRefGoogle Scholar
  43. Conover DO (1990) The relation between capacity for growth and length of growing season: evidence for and implications of countergradient variation. Trans Am Fish Soc 119:416–430.  https://doi.org/10.1577/1548-8659 CrossRefGoogle Scholar
  44. Conover DO, Brown JJ, Ehtisham A (1997) Countergradient variation in growth of young striped bass (Morone saxatilis) from different latitudes. Can J Fish Aquat Sci 54:2401–2409.  https://doi.org/10.1139/f97-147 CrossRefGoogle Scholar
  45. Cooke GM, Chao NL, Beheregaray LB (2012) Marine incursions, cryptic species and ecological diversification in Amazonia: the biogeographic history of the croaker genus Plagioscion (Sciaenidae). J Biogeogr 39:724–738.  https://doi.org/10.1111/j.1365-2699.2011.02635.x CrossRefGoogle Scholar
  46. Daga VS, Skóra F, Padial AA, Abilhoa V, Gubiani ÉA, Vitule JRS (2015) Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia 746:327–347CrossRefGoogle Scholar
  47. Daga VS, Debona T, Abilhoa V, Gubiani ÉA, Vitule JRS (2016) Non-native fish invasions of a Neotropical ecoregion with high endemism: a review of the Iguaçu River. Aqua Invasions 11:209–223CrossRefGoogle Scholar
  48. Dawson W, Moser D, van Kleunen M, Kreft H, Pergl J, Pyšek P et al (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1(7):0186CrossRefGoogle Scholar
  49. Demetrio JA, Gomes LC, Latini JD, Agostinho AA (2012) Influence of net cage farming on the diet of associated wild fish in a Neotropical reservoir. Aquaculture 330:172–178CrossRefGoogle Scholar
  50. Diamante NA, Prioli SMAP, Oliveira AV, Fabrin TMC, Prioli LM, Prioli AJ (2017) Genetic relationships of Plagioscion squamosissimus (Perciformes, Sciaenidae) from five Neotropical river basins evaluated using mitochondrial atpase6/8 gene sequences. J Fish Biol 91(1):375–384CrossRefGoogle Scholar
  51. Espínola LA, Minte-Vera CV, Júlio HF Jr (2010) Invasibility of reservoirs in the Paraná Basin, Brazil, to Cichla kelberi Kullander and Ferreira, 2006. Biol Invasions 12:1873–1888CrossRefGoogle Scholar
  52. FEOW - Freshwater Ecoregions of the World (2018) http://www.feow.org. Accessed 5 Jan 2018
  53. Fontenele O, Peixoto JT (1978) Análise dos resultados de introdução da pescada do Piauí, Plagioscion squamosissimus (Heckel, 1840), nos açudes do Nordeste. Bol Téc DNOCS 36:85–112Google Scholar
  54. Frehse FD, Braga RR, Nocera GA, Vitule JRS (2016) Non-native species and invasion biology in a megadiverse country: scientometric analysis and ecological interactions in Brazil. Biol Invasions 18:3713–3725.  https://doi.org/10.1007/s10530-016-1260-9 CrossRefGoogle Scholar
  55. Froese R, Pauly D (2017) FishBase. World Wide Web electronic publication. www.fishbase.org. Accessed 5 Jan 2018
  56. Gallardo B, Aldridge DC, Gonzalez-Moreno P, Pergl J, Pizarro M, Pysek P et al (2017) Protected areas offer refuge from invasive species spreading under climate change. Glob Change Biol 23:5331–5343CrossRefGoogle Scholar
  57. Gennari Filho O, Braga FDS (1996) Fecundidade e desova de Astyanax bimaculatus e A. schubarti (Characidae, Tetragonopterinae) na represa de Barra Bonita, rio Piracicaba (SP). Rev UNIMAR Mar 18(2):241–254Google Scholar
  58. Gido KB, Brown JH (1999) Invasion of North American drainages by alien fish species. Fresh Biol 42:387–399.  https://doi.org/10.1046/j.1365-2427.1999.444490.x CrossRefGoogle Scholar
  59. Gois KS, Pelicice FM, Gomes LC, Agostinho AA (2015) Invasion of an Amazonian cichlid in the Upper Paraná River: facilitation by dams and decline of a phylogenetically related species. Hydrobiologia 746:401–413CrossRefGoogle Scholar
  60. Goldman CA, Snell RR, Thomason JJ, Brown DB (1990) Principles of allometry. In: Proceedings of the eleventh workshop/conference of the association for biology laboratory educationGoogle Scholar
  61. Graça WJ, Pavanelli CS (2007) Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. EDUEM, MaringáGoogle Scholar
  62. Guo WY, Lambertini C, Li XZ, Meyerson LA, Brix H (2013) Invasion of Old World Phragmites australis in the New World: precipitation and temperature patterns combined with human influences redesign the invasive niche. Glob Change Biol 19(11):3406–3422.  https://doi.org/10.1111/gcb.12295 CrossRefGoogle Scholar
  63. Hahn NS, Agostinho AA, Goitein R (1997) Feeding ecology of curvina Plagioscion squamosissimus (Heckel, 1840) (Osteichthyes, Perciformes) in the Itaipu reservoir and Porto Rico floodplain. Acta Limnol Bras 9(1):11–22Google Scholar
  64. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467.  https://doi.org/10.1111/j.1461-0248.2005.00739.x CrossRefPubMedGoogle Scholar
  65. Havel JE, Lee CE, Zanden VA (2005) Do reservoirs facilitate invasions into landscapes? Bioscience 55:518–525.  https://doi.org/10.1641/0006-3568 CrossRefGoogle Scholar
  66. Heger T, Jeschke JM (2014) The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123:741–750.  https://doi.org/10.1111/j.1600-0706.2013.01263.x CrossRefGoogle Scholar
  67. Henry R (2014) Represa de Jurumirim: ecologia, modelagem e aspectos sociais. Holos Editora, Ribeirão PretoGoogle Scholar
  68. Hoeinghaus DA, Agostinho AN, Gomes LU, Pelicice FE, Okada ED, Latini JO et al (2009) Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conserv Biol 23:1222–1231.  https://doi.org/10.1111/j.1523-1739.2009.01248.x CrossRefPubMedGoogle Scholar
  69. Holyoak M, Leibold MA, Holt RD (2005) Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, ChicagoGoogle Scholar
  70. Janzen DH (1985) Dan Janzen’s thoughts from the tropics 1: on ecological fitting. Oikos 45(3):308–310CrossRefGoogle Scholar
  71. Johnson PT, Olden JD, Zanden VA (2008) Dam invaders: impoundments facilitate biological invasions into freshwaters. Front Ecol Environ 6:357–363.  https://doi.org/10.1890/070156 CrossRefGoogle Scholar
  72. Lacerda ACF, Takemoto RM, Tavares-Dias M, Poulin R, Pavanelli GC (2012) Comparative parasitism of the fish Plagioscion squamosissimus in native and invaded river basins. J Parasitol 98(4):713–717CrossRefGoogle Scholar
  73. Lasso-Alcalá OM, Lasso CA, Señaris JC (1998) Aspectos de la biología y ecología de la Curvinata Plagioscion squamosissimus (Heckel, 1840) (Pisces: Sciaenidae) en los llanos inundables del Estado Apure, Venezuela. Memoria Sociedad de Ciencias Naturales La Salle 149:3–33Google Scholar
  74. Lawler JJ, Spencer B, Olden JD, Kim S-H, Lowe C, Bolton S et al (2013) Mitigation and adaptation strategies to reduce climate vulnerabilities and maintain ecosystem services. In: Pielke RA, Suding K, Seastedt T (eds) Climate vulnerability: understanding and addressing threats to essential resources, 1st edn. Elsevier, Oxford, pp 315–335CrossRefGoogle Scholar
  75. Lee H, Ghosh SK (2009) Performance of information criteria for spatial models. J Stat Comput Simul 79(1):93–106CrossRefGoogle Scholar
  76. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7(7):601–613CrossRefGoogle Scholar
  77. Leprieur F, Beauchard O, Blanchet S, Oberdorff T, Brosse S (2008) Fish invasions in the worldś river systems: when natural processes are blurred by human activities. PLoS Biol 6:28.  https://doi.org/10.1371/journal.pbio.0060028 CrossRefGoogle Scholar
  78. Levine JM, D’Ántonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26.  https://doi.org/10.2307/3546992 CrossRefGoogle Scholar
  79. Liew JH, Tan HH, Yeo DC (2016) Dammed rivers: impoundments facilitate fish invasions. Freshw Biol 61:1421–1429.  https://doi.org/10.1111/fwb.12781 CrossRefGoogle Scholar
  80. Lima DP Jr, Magalhães ALB, Pelicice FM, Vitule JRS, Azevedo-Santos VM, Orsi ML et al (2018) Aquaculture expansion in Brazilian freshwaters against the Aichi biodiversity targets. Ambio.  https://doi.org/10.1007/s13280-017-1001-z CrossRefPubMedGoogle Scholar
  81. Liu C, He D, Chen Y, Olden JD (2017) Species invasions threaten the antiquity of Chinaś freshwater fish fauna. Divers Distrib 23:556–566.  https://doi.org/10.1111/ddi.12541 CrossRefGoogle Scholar
  82. Lockwood JL, Cassey P, Blackburn TM (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20(5):223–228CrossRefGoogle Scholar
  83. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion Ecology. Blackwell, MaldenGoogle Scholar
  84. Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910.  https://doi.org/10.1111/j.1472-4642.2009.00594.x CrossRefGoogle Scholar
  85. Machado CEM (1974) Ação da CESP no meio ambiente. CESP, São PauloGoogle Scholar
  86. Matsuzaki S-IS, Sasaki T, Akasaka M (2013) Consequences of the introduction of exotic and translocated species and future extirpations on the functional diversity of freshwater fish assemblages. Glob Ecol Biogeogr 22:1071–1082.  https://doi.org/10.1111/geb.12067 CrossRefGoogle Scholar
  87. McBride RS, Somarakis S, Fitzhugh GR, Albert A, Yaragina NA, Wuenschel MJ et al (2015) Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish 16:23–57.  https://doi.org/10.1111/faf.12043 CrossRefGoogle Scholar
  88. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260.  https://doi.org/10.1016/j.biocon.2005.09.005 CrossRefGoogle Scholar
  89. Mendes RA, da Costa Lopes AS, de Souza LC, de Oliveira Lima M, da Silva Santos L (2016) DDT concentration in fish from the Tapajós River in the Amazon region, Brazil. Chemosphere 153:340–345.  https://doi.org/10.1016/j.chemosphere.2016.03.054 CrossRefGoogle Scholar
  90. Mèrona B, Juras AA, Santos GM, Cintra IH (2010) Os peixes ea pesca no Baixo Tocantins: 20 anos depois da UHE Tucurui. Eletronorte, BrasíliaGoogle Scholar
  91. Miranda-Chumacero G, Wallace R, Calderón H, Calderón G, Willink P, Guerrero M et al (2012) Distribution of arapaima (Arapaima gigas) (Pisces: Arapaimatidae) in Bolivia: implications in the control and management of a non-native population. Bioinvasions Rec 1(2):129–138CrossRefGoogle Scholar
  92. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097.  https://doi.org/10.1371/journal.pmed1000097 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Mojica ALB (2011) Aspectos reprodutivos de Plagioscion squamosissimus (teleostei, sciaenidae) mantidos em tanque rede na comunidade do Lago do Catalão, Amazônia Central. Dissertation, PPG-CIPET, UFAMGoogle Scholar
  94. Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biol Conserv 78:149–161CrossRefGoogle Scholar
  95. Moyle PB, Marchetti MP (2006) Predicting invasion success: freshwater fishes in California as a model. Bioscience 56(6):515–524CrossRefGoogle Scholar
  96. Neves MP, Delariva RL, Guimarães ATB, Sanches PV (2015) Carnivory during ontogeny of the Plagioscion squamosissimus: a successful non-native fish in a lentic environment of the Upper Paraná River Basin. PLoS ONE 10(11):e0141651CrossRefGoogle Scholar
  97. Olden JD (2016) Challenges and opportunities for fish conservation in dam-impacted waters. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  98. Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24.  https://doi.org/10.1016/j.tree.2003.09.010 CrossRefPubMedGoogle Scholar
  99. Oliveira EF, Minte-Vera CV, Goulart E (2005) Structure of fish assemblages along spatial gradients in a deep subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay border). Environ Biol Fishes 72(3):283–304CrossRefGoogle Scholar
  100. Panarari-Antunes RS, Prioli AJ, Prioli SM, Gomes VN, Júlio HF, Agostinho CS et al (2012) Genetic divergence among invasive and native populations of Plagioscion squamosissimus (Perciformes, Sciaenidae) in Neotropical regions. J Fish Biol 80:2434–2447.  https://doi.org/10.1111/j.1095-8649.2012.03290.x CrossRefPubMedGoogle Scholar
  101. Paolucci EM, MacIsaac HJ, Ricciardi A (2013) Origin matters: alien consumers inflict greater damage on prey populations than do native consumers. Divers Distrib 19(8):988–995CrossRefGoogle Scholar
  102. Pelicice FM, Agostinho AA (2009) Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a Neotropical reservoir. Biol Invasions 11:1789–1801CrossRefGoogle Scholar
  103. Pelicice FM, Vitule JRS, Junior LA, Orsi ML, Agostinho AA (2014) A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conserv Lett 7:55–60.  https://doi.org/10.1111/conl.12029 CrossRefGoogle Scholar
  104. Pereira LS, Agostinho AA, Gomes LC (2015) Eating the competitor—a mechanism of invasion. Hydrobiologia 746:223–231.  https://doi.org/10.1007/s10750-014-2031-1 CrossRefGoogle Scholar
  105. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions (MPB-49). Princeton University Press, New JerseyGoogle Scholar
  106. Petesse ML, Petrere M (2012) Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietê river basin, Brazil. Ecol Eng 48:109–116.  https://doi.org/10.1016/j.ecoleng.2011.06.033 CrossRefGoogle Scholar
  107. Petrere M Jr (1978) Pesca e esforço de pesca no estado do Amazonas. I. Esforço e captura por unidade de esforço. Acta Amaz 8:439–454CrossRefGoogle Scholar
  108. Petrere M Jr, Agostinho AA, Okada EK, Júlio HF Jr (2002) Review of the fisheries in the Brazilian portion of the Paraná/Pantanal basin. In: Cowx IG (ed) Management and ecology of lake and reservoir fisheries. Fishing News Books, Oxford, pp 123–143Google Scholar
  109. Pinheiro LA, Frédou FL (2004) General characteristics of industrial fishing landings in the state of Pará. Sci J UFPA 4:1–16Google Scholar
  110. Porvari P (1995) Mercury levels of fish in Tucuruí hydroelectric reservoir and in River Mojú in Amazonia, in the state of Pará, Brazil. Sci Total Environ 175:109–117.  https://doi.org/10.1016/0048-9697(95)04907-X CrossRefGoogle Scholar
  111. R Core Development Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  112. Rahel FJ (2002) Homogenization of freshwater faunas. Annu Rev Ecol Evol Syst 33:291–315CrossRefGoogle Scholar
  113. Ramos IP, Franceschini L, Zago AC, Zica ÉOP, Wunderlich AC, Carvalho ED, Silva RJD (2013) New host records and a checklist of fishes infected with Austrodiplostomum compactum (Digenea: Diplostomidae) in Brazil. Rev Bras Parasitol Vet 22(4):511–518CrossRefGoogle Scholar
  114. Ribeiro VR, da Silva PR, Gubiani ÃA, Faria L, Daga VS, Vitule JRS (2017) Imminent threat of the predator fish invasion Salminus brasiliensis in a Neotropical ecoregion: eco-vandalism masked as an environmental project. Perspect Ecol Conserv.  https://doi.org/10.1016/j.pecon.2017.03.004 CrossRefGoogle Scholar
  115. Roy HE, Handley LJL, Schönrogge K et al (2011) Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids? BioControl 56:451–468.  https://doi.org/10.1007/s10526-011-9349-7 CrossRefGoogle Scholar
  116. Salmenkova EA (2008) Population genetic processes in introduction of fish. Russ J Genet 44:758–766CrossRefGoogle Scholar
  117. Santa-Fé ÚMG, Gubiani EA (2016) Seletividade de redes de emalhar para uma espécie de peixe não-nativo em um reservatório neotropical, Paraná, Brasil. Bol Inst Pesca 42:167–179CrossRefGoogle Scholar
  118. Santos ABI, Terra BDF, Araújo FG (2010) Influence of the river flow on the structure of fish assemblage along the longitudinal gradient from river to reservoir. Zoologia 27(5):732–740CrossRefGoogle Scholar
  119. Schlaepfer MA, Hoover C, Dodd CK Jr (2005) Challenges in evaluating the impact of the trade in amphibians and reptiles on wild populations. Bioscience 55:256–264.  https://doi.org/10.1641/0006-3568 CrossRefGoogle Scholar
  120. Schultz ET, Conover DO (1997) Latitudinal differences in somatic energy storage: adaptive responses to seasonality in an estuarine fish (Atherinidae: Menidia menidia). Oecologia 109:516–529.  https://doi.org/10.1007/s004420050112 CrossRefPubMedGoogle Scholar
  121. Silva DS, Lucotte M, Paquet S, Davidson R (2009) Influence of ecological factors and of land use on mercury levels in fish in the Tapajós River basin, Amazon. Environ Res 109:432–446.  https://doi.org/10.1016/j.envres.2009.02.011 CrossRefGoogle Scholar
  122. Silva DS, Lucotte M, Paquet S, Brux G, Lemire M (2013) Inverse mercury and selenium concentration patterns between herbivorous and piscivorous fish in the Tapajos River, Brazilian Amazon. Ecotoxicol Environ Saf 97:17–25.  https://doi.org/10.1016/j.ecoenv.2013.06.025 CrossRefGoogle Scholar
  123. Simberloff D, Vitule JR (2014) A call for an end to calls for the end of invasion biology. Oikos 123(4):408–413CrossRefGoogle Scholar
  124. Skóra F, Abilhoa V, Padial AA, Vitule JRS (2015) Darwin’s hypotheses to explain colonization trends: evidence from a quasi-natural experiment and a new conceptual model. Divers Distrib 21:583–594.  https://doi.org/10.1111/ddi.12308 CrossRefGoogle Scholar
  125. Stefani PM, Rocha O (2009) Diet composition of Plagioscion squamosissimus (Heckel, 1840), a fish introduced into the Tietê River system. Braz J Biol 69(3):805–812CrossRefGoogle Scholar
  126. Stenseth NC, Mysterud A (2002) Climate, changing phenology, and other life history traits: nonlinearity and match-mismatch to the environment. Proc Natl Acad Sci 99:13379–13381CrossRefGoogle Scholar
  127. Suzuki HI, Bulla CK, Agostinho AA, Gomes LC (2005) Estratégias reprodutivas de assembléias de peixes em reservatórios. In: Rodrigues L, Thomaz SM, Agostinho AA, Gomes LC (org) Biocenoses em reservatórios: padrões espaciais e temporais. Rima, Londrina, pp 223–236Google Scholar
  128. Torloni CEC, Corrêa ARA, Carvalho AA Jr, Santos JJ, Gonçalves JL, Gereto EJ et al (1993a) Produção pesqueira e composição das capturas em reservatórios sob concessão da CESP nos rios Tietê, Paraná e Grande, no período de 1986 a 1991. Série Pesquisa e Desenvolvimento, São PauloGoogle Scholar
  129. Torloni CEC, Santos JJ, Carvalho AA Jr, Corrêa ARA (1993b) A pescada-do-piauí Plagioscion squamosissimus (Heckel, 1840) (Osteichthyes, Perciformes), nos reservatórios da Companhia Energética de São Paulo—CESP. Série de Pesquisa e Desenvolvimento, São PauloGoogle Scholar
  130. Toussaint A, Charpin N, Brosse S, Villéger S (2016) Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Sci Rep 6:22125CrossRefGoogle Scholar
  131. Vazzoler AEAM (1981) Manual de métodos para estudos biológicos de populações de peixes: reprodução e crescimento. CNPqGoogle Scholar
  132. Vazzoler AEAM (1996) Biologia da reprodução de peixes teleósteos: teoria e prática. EDUEM, MaringáGoogle Scholar
  133. Vellend M, Harmon LJ, Lockwood JL, Mayfield MM, Hughes AR, Wares JP, Sax DF (2007) Effects of exotic species on evolutionary diversification. Trends Ecol Evol 22(9):481–488CrossRefGoogle Scholar
  134. Vitule JRS, Freire CA, Simberloff D (2009) Introduction of non-native freshwater fish can certainly be bad. Fish Fish 10:98–108.  https://doi.org/10.1111/j.1467-2979.2008.00312.x CrossRefGoogle Scholar
  135. Vitule JRS, Skóra F, Abilhoa V (2012) Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers Distrib 18:111–120.  https://doi.org/10.1111/j.1472-4642.2011.00821.x CrossRefGoogle Scholar
  136. Vitule JRS, Bornatowski H, Freire CA, Abilhoa V (2014) Extralimital introductions of Salminus brasiliensis (Cuvier, 1816)(Teleostei, Characidae) for sport fishing purposes: a growing challenge for the conservation of biodiversity in neotropical aquatic ecosystems. Bioinvasions Rec 3:291–296CrossRefGoogle Scholar
  137. Vitule JRS, da Costa AP, Frehse FA, Bezerra LA, Occhi TV, Daga VS et al (2016) Comments on ‘Fish biodiversity and conservation in South America by Reis et al. (2016)’. J Fish Biol 90:1182–1190CrossRefGoogle Scholar
  138. Vitule JRS, Agostinho AA, Azevedo-Santos VM, Daga VS, Darwall WR, Fitzgerald DB et al (2017) We need better understanding about functional diversity and vulnerability of tropical freshwater fishes. Biodivers Conserv 267:57–762Google Scholar
  139. Ward EJ (2008) A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol Model 211(1):1–10.  https://doi.org/10.1016/j.ecolmodel.2007.10.030 CrossRefGoogle Scholar
  140. Weatherley AH (1990) Approaches to understanding fish growth. Trans Am Fish Soc 119(4):662–672.  https://doi.org/10.1577/1548-8659 CrossRefGoogle Scholar
  141. Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monogr 61:343–365.  https://doi.org/10.2307/2937046 CrossRefGoogle Scholar
  142. Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER (2015) Functional traits, convergent evolution, and periodic tables of niches. Ecol Lett 18:737–751.  https://doi.org/10.1111/ele.12462 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Wunderlich AC, Silva RJ, Zica ÉO, Rebelo MF, Parente TE, Vidal-Martínez VM (2015) The influence of seasonality, fish size and reproductive status on EROD activity in Plagioscion squamosissimus: implications for biomonitoring of tropical/subtropical reservoirs. Ecol Indic 58:267–276.  https://doi.org/10.1016/j.ecolind.2015.05.063 CrossRefGoogle Scholar
  144. Zenni RD, Simberloff D (2013) Number of source populations as a potential driver of pine invasions in Brazil. Biol Invasions 15:1623–1639CrossRefGoogle Scholar
  145. Zenni RD, Bailey JK, Simberloff D (2014) Rapid evolution and range expansion of an invasive plant are driven by provenance environment interactions. Ecol Lett 17:727–735.  https://doi.org/10.1111/ele.12278 CrossRefPubMedGoogle Scholar
  146. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar
  147. Zwiener VP, Lira-Noriega A, Grady CJ, Padial AA, Vitule JRS (2018) Climate change as a driver of biotic homogenization of woody plants in the Atlantic forest. Glob Ecol Biogeogr 27:298–309.  https://doi.org/10.1111/geb.12695 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jamile Queiroz-Sousa
    • 1
  • Eduardo Meneguzzi Brambilla
    • 1
  • James Raul Garcia-Ayala
    • 1
  • Fabio Alexandre Travassos
    • 2
  • Vanessa Salete Daga
    • 3
  • André Andrian Padial
    • 4
  • Jean Ricardo Simões Vitule
    • 3
  1. 1.Programa de Pós-graduação em Ciências Biológicas área de concentração ZoologiaInstituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”BotucatuBrazil
  2. 2.Programa de Pós-Graduação em Aquicultura, Unicenter. Universidade Nilton LinsInstituto de Pesquisas da Amazônia – INPAManausBrazil
  3. 3.Laboratório de Ecologia e Conservação – LEC, Departamento de Engenharia Ambiental, Setor de TecnologiaUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Departamento de Botânica, Setor de Ciências BiológicasUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations