Advertisement

Coupling in situ chemical oxidation with bioremediation of chloroethenes: a review

  • Lenka HonetschlägerováEmail author
  • Marek Martinec
  • Radek Škarohlíd
Review paper

Abstract

Contamination by chloroethenes represents serious risks to both the environment and human life due to their toxic and sometimes carcinogenic effects. Coupling in situ chemical oxidation (ISCO) and in situ bioremediation (ISB) approaches to clean the sites contaminated by chloroethenes is increasingly being considered as a biphasic technology. Successful implementation of ISB after ISCO, however, requires an understanding of ISCO effects on indigenous microbial population responsible for biodegradation. This review focuses on interactions between three main ISCO approaches and microbial populations in chloroethenes contaminated subsurface. Chloroethenes toxicity and fate in the subsurface have also been discussed. The review further summarizes ISCO and microbial strategies for chloroethenes remediation. Indigenous microbial degrading capacity, especially the anaerobic step, may be damaged by aggressive conditions that are required for successful ISCO treatment. Therefore, the impact of oxidation agents on soil geochemistry and bioprocesses have been investigated. The review also provides up-to date summary in coupled ISCO and ISB for chloroethenes remediation. Finally, future research needs are proposed to optimize the application of this biphasic technology for the chloroethenes contaminated sites remediation.

Graphic abstract

Keywords

ISCO ISB Chloroethenes contamination Groundwater remediation 

Notes

Acknowledgements

This research was financially supported by Institutional Program of University of Chemistry and Technology Prague (IP 2019–2020). We thanks Paul McGachy for providing language help.

References

  1. Abe Y, Aravena R, Zopfi J, Parker B, Hunkeler D (2009) Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods. J Contam Hydrol 107(1–2):10–21.  https://doi.org/10.1016/j.jconhyd.2009.03.002 CrossRefGoogle Scholar
  2. Almendros G, González-Vila FJ, Martín F (1989) Room temperature alkaline permanganate oxidation of representative humic acids. Soil Biol Biochem 21(4):481–486.  https://doi.org/10.1016/0038-0717(89)90118-1 CrossRefGoogle Scholar
  3. Alvarez-Zaldívar P, Centler F, Maier U, Thullner M, Imfeld G (2016) Biogeochemical modelling of in situ biodegradation and stable isotope fractionation of intermediate chloroethenes in a horizontal subsurface flow wetland. Ecol Eng 90:170–179.  https://doi.org/10.1016/j.ecoleng.2016.01.037 CrossRefGoogle Scholar
  4. Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38(13):3705–3712.  https://doi.org/10.1021/es035121o CrossRefGoogle Scholar
  5. ATSDR (1997) Toxicological profile for tetrachloroethylene. U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease RegistryGoogle Scholar
  6. ATSDR (2006) Toxicological profile for vinyl chloride. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry Public Health ServiceGoogle Scholar
  7. Azadpour-Keeley A, Wood LA, Lee TR, Mravik SC (2004) Microbial responses to in situ chemical oxidation, six-phase heating, and steam injection remediation technologies in groundwater. Remediation 14(4):5–17.  https://doi.org/10.1002/rem.20018 CrossRefGoogle Scholar
  8. Aziz CE, Wymore RA, Steffan RJ (2013) Bioaugmentation considerations. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugmentation for groundwater remediation. Springer, New York, pp 141–169.  https://doi.org/10.1007/978-1-4614-4115-1_5 CrossRefGoogle Scholar
  9. Bass DH, Hastings NA, Brown RA (2000) Performance of air sparging systems: a review of case studies. J Hazard Mater 72(2–3):101–119.  https://doi.org/10.1016/S0304-3894(99)00136-3 CrossRefGoogle Scholar
  10. Beeman RE, Bleckmann CA (2002) Sequential anaerobic–aerobic treatment of an aquifer contaminated by halogenated organics: field results. J Contam Hydrol 57(3–4):147–159.  https://doi.org/10.1016/S0169-7722(02)00008-6 CrossRefGoogle Scholar
  11. Belay N, Daniels L (1987) Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl Environ Microbiol 53(7):1604–1610Google Scholar
  12. Bou-Nasr J, Hampton D, Cassidy D (2006) Comparative study of the effect of four ISCO oxidants on PCE oxidation and aerobic microbial activity. In: Fifth international conference on remediation of chlorinated and recalcitrant compounds. Battelle Press, Monterey, CaliforniaGoogle Scholar
  13. Bradley PM (2003) History and ecology of chloroethene biodegradation: a review. Bioremediat J 7(2):81–109.  https://doi.org/10.1080/713607980 CrossRefGoogle Scholar
  14. Buxton VG, Malone TN, Salmon GA (1997) Reaction of SO4- with Fe2+, Mn2+ and Cu2+ in aqueous solution. J Chem Soc, Faraday Trans 93:2893–2897.  https://doi.org/10.1039/a701472d CrossRefGoogle Scholar
  15. Buyuksonmez F, Hess TF, Crawford RL, Watts RJ (1998) Toxic effects of modified fenton reactions on xanthobacter flavus FB71. Appl Environ Microbiol 64(10):3759–3764Google Scholar
  16. Büyüksönmez F, Hess TF, Crawford RL, Paszczynski A, Watts RJ (1999) Optimization of simultaneous chemical and biological mineralization of perchloroethylene. Appl Environ Microbiol 65:2784–2788Google Scholar
  17. Caldwell JC, Keshava N (2006) Key issues in the modes of action and effects of trichloroethylene metabolites for liver and kidney tumorigenesis. Environ Health Perspect 114(9):1457–1463.  https://doi.org/10.1289/ehp.8692 CrossRefGoogle Scholar
  18. Chang Y-C, Chen T-Y, Tsai Y-P, Chen K-F (2018) Remediation of trichloroethene (TCE)-contaminated groundwater by persulfate oxidation: a field-scale study. RSC Adv 8:2433–2440.  https://doi.org/10.1039/C7RA10860E CrossRefGoogle Scholar
  19. Chapelle FH (1996) Identifying redox conditions that favor the natural attenuation of chlorinated ethenes in contaminated ground-water systems. In: Symposium on natural attenuation of chlorinated organics in ground water. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  20. Chapelle FH, Bradley PM, Casey CC (2005) Behavior of a chlorinated ethene plume following source-area treatment with Fenton’s reagent. Groundw Monit Remediat 25(2):131–141.  https://doi.org/10.1111/j.1745-6592.2005.0020.x CrossRefGoogle Scholar
  21. Chen Y-M, Lin T-F, Huang C, Lin J-C (2008) Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere 72(11):1671–1680.  https://doi.org/10.1016/j.chemosphere.2008.05.035 CrossRefGoogle Scholar
  22. Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68(12):6162–6171.  https://doi.org/10.1128/AEM.68.12.6162-6171.2002 CrossRefGoogle Scholar
  23. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125CrossRefGoogle Scholar
  24. Cwiertny DM, Scherer MM (2010) Chlorinated solvent chemistry: structures, nomenclature and properties. In: Stroo HF, Ward CH (eds) In situ remediation of chlorinated solvent plumes. SERDP/ESTCP environmental remediation technology. Springer, New YorkGoogle Scholar
  25. Devi P, Das U, Dalai AK (2016) In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Sci Total Environ 571:643–657.  https://doi.org/10.1016/j.scitotenv.2016.07.032 CrossRefGoogle Scholar
  26. Devlin JF, Katic D, Barker JF (2004) In situ sequenced bioremediation of mixed contaminants in groundwater. J Contam Hydrol 69(3–4):233–261.  https://doi.org/10.1016/S0169-7722(03)00156-6 CrossRefGoogle Scholar
  27. Dey K, Roy P (2009) Degradation of trichloroethylene by bacillus sp.: isolation strategy, strain characteristics, and cell immobilization. Curr Microbiol 59(3):256–260.  https://doi.org/10.1007/s00284-009-9427-6 CrossRefGoogle Scholar
  28. Doğan-Subaşı E, Bastiaens L, Boon N, Dejonghe W (2013) Microbial dechlorination activity during and after chemical oxidant treatment. J Hazard Mater 262:598–605.  https://doi.org/10.1016/j.jhazmat.2013.09.003 CrossRefGoogle Scholar
  29. Doherty RE (2000) A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1,1,1-trichloroethane in the United States: part 1—historical background; carbon tetrachloride and tetrachloroethylene. Environ Forensics 1(2):69–81.  https://doi.org/10.1006/enfo.2000.0011 CrossRefGoogle Scholar
  30. Dolinova I, Strojsova M, Cernik M, Nemecek J, Machackova J, Sevcu A (2017) Microbial degradation of chloroethenes: a review. Environ Sci Pollut Res Int 24(15):13262–13283.  https://doi.org/10.1007/s11356-017-8867-y CrossRefGoogle Scholar
  31. Dolinová I, Czinnerová M, Dvořák L, Stejskal V, Ševců A, Černík M (2016) Dynamics of organohalide-respiring bacteria and their genes following in situ chemical oxidation of chlorinated ethenes and biostimulation. Chemosphere 157:276–285.  https://doi.org/10.1016/j.chemosphere.2016.05.030 CrossRefGoogle Scholar
  32. Frascari D, Pinelli D, Nocentini M, Baleani E, Cappelletti M, Fedi S (2008) A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp. PB1. Biochem Eng J 42(2):139–147.  https://doi.org/10.1016/j.bej.2008.06.011 CrossRefGoogle Scholar
  33. Frascari D, Fraraccio S, Nocentini M, Pinelli D (2013) Aerobic/anaerobic/aerobic sequenced biodegradation of a mixture of chlorinated ethenes, ethanes and methanes in batch bioreactors. Bioresour Technol 128:479–486.  https://doi.org/10.1016/j.biortech.2012.10.026 CrossRefGoogle Scholar
  34. Frascari D, Zanaroli G, Danko AS (2015) In situ aerobic cometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399.  https://doi.org/10.1016/j.jhazmat.2014.09.041 CrossRefGoogle Scholar
  35. Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55(9):2144–2151Google Scholar
  36. Furman OS, Teel AL, Watts RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44(16):6423–6428.  https://doi.org/10.1021/es1013714 CrossRefGoogle Scholar
  37. Gerritse J, Renard V, Gottschal JC, Visser J (1995) Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Appl Microbiol Biotechnol 43:920–928.  https://doi.org/10.1007/BF02431929 CrossRefGoogle Scholar
  38. Gossett JM (1987) Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons. Environ Sci Technol 21(2):202–208.  https://doi.org/10.1021/es00156a012 CrossRefGoogle Scholar
  39. Hao F, Guo W, Wang A, Leng Y, Li H (2014) Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant. Ultrason Sonochem 21(2):554–558.  https://doi.org/10.1016/j.ultsonch.2013.09.016 CrossRefGoogle Scholar
  40. Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68(2):485–495.  https://doi.org/10.1128/aem.68.2.485-495.2002 CrossRefGoogle Scholar
  41. Henschler D (1994) Toxicity of chlorinated organic-compounds—effects of the introduction of chlorine in organic-molecules. Angew Chem Int Edit 33(19):1920–1935.  https://doi.org/10.1002/anie.199419201 CrossRefGoogle Scholar
  42. Herman DC, Frankenberger WT (1998) Microbial-mediated reduction of perchlorate in groundwater. J Environ Qual 27(4):750–754.  https://doi.org/10.2134/jeq1998.00472425002700040004x CrossRefGoogle Scholar
  43. Hewitt J, Morris JG (1975) Superoxide dismutase in some obligately anaerobic bacteria. FEBS Lett 50(3):315–318.  https://doi.org/10.1016/0014-5793(75)90058-7 CrossRefGoogle Scholar
  44. Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398.  https://doi.org/10.1016/S0168-6445(98)00030-8 CrossRefGoogle Scholar
  45. Hopkins GD, Semprini L, McCarty PL (1993) Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Appl Environ Microbiol 59(5):2277–2285Google Scholar
  46. House DA (1962) Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62(3):185–203.  https://doi.org/10.1021/cr60217a001 CrossRefGoogle Scholar
  47. Howsawkeng J, Watts RJ, Washington DL, Teel AL, Hess TF, Crawford RL (2001) Evidence for simultaneous abiotic − biotic oxidations in a microbial-Fenton’s system. Environ Sci Technol 35(14):2961–2966.  https://doi.org/10.1021/es001802x CrossRefGoogle Scholar
  48. Hrapovic L, Sleep BE, Major DJ, Hood ED (2005) Laboratory study of treatment of trichloroethene by chemical oxidation followed by bioremediation. Environ Sci Technol 39(8):2888–2897.  https://doi.org/10.1021/es049017y CrossRefGoogle Scholar
  49. Huang K-C, Hoag GE, Chheda P, Woody BA, Dobbs GM (2001) Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study. J Hazard Mater 87(1–3):155–169.  https://doi.org/10.1016/S0304-3894(01)00241-2 CrossRefGoogle Scholar
  50. Huang KC, Couttenye RA, Hoag GE (2002) Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49(4):413–420.  https://doi.org/10.1016/S0045-6535(02)00330-2 CrossRefGoogle Scholar
  51. Hug LA, Maphosa F, Leys D, Loffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368(1616):20120322.  https://doi.org/10.1098/rstb.2012.0322 CrossRefGoogle Scholar
  52. IARC. (2014) Monographs on the evaluation of the carcinogenic risk of chemicals to humans. World Health Organization, International Agency for Research on Cancer, GenevaGoogle Scholar
  53. Jho EH, Shin D, Turner SJ, Singhal N (2014) Effect of Fenton reagent shock and recovery periods on anaerobic microbial community structure and degradation of chlorinated aliphatics. Biodegradation 25(2):253–264.  https://doi.org/10.1007/s10532-013-9657-y CrossRefGoogle Scholar
  54. Kastner JR, Domingo JS, Denham M, Molina M, Brigmon R (2000) Effect of chemical oxidation on subsurface microbiology and trichloroethene (TCE) biodegradation. Bioremediat J 4:219–236.  https://doi.org/10.1080/10588330008951111 CrossRefGoogle Scholar
  55. Kim S, Bae W, Hwang J, Park J (2010) Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp. Water Sci Technol 62(9):1991–1997.  https://doi.org/10.2166/wst.2010.471 CrossRefGoogle Scholar
  56. Kong S-H, Watts RJ, Choi J-H (1998) Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37(8):1473–1482.  https://doi.org/10.1016/s0045-6535(98)00137-4 CrossRefGoogle Scholar
  57. Kotik M, Davidová A, Voříšková J, Baldrian P (2013) Bacterial communities in tetrachloroethene-polluted groundwaters: a case study. Sci Total Environ 454–455:517–527.  https://doi.org/10.1016/j.scitotenv.2013.02.082 CrossRefGoogle Scholar
  58. Kret E, Kiecak A, Malina G, Nijenhuis I, Postawa A (2015) Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies. Environ Sci Pollut Res 22(13):9877–9888.  https://doi.org/10.1007/s11356-015-4156-9 CrossRefGoogle Scholar
  59. Kulik N, Goi A, Trapido M, Tuhkanen T (2006) Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J Environ Manag 78(4):382–391.  https://doi.org/10.1016/j.jenvman.2005.05.005 CrossRefGoogle Scholar
  60. Laurent F, Cébron A, Schwartz C, Leyval C (2012) Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico–chemical properties. Chemosphere 86(6):659–664.  https://doi.org/10.1016/j.chemosphere.2011.11.018 CrossRefGoogle Scholar
  61. Lee B-D, Hosomi M (2001) A hybrid Fenton oxidation–microbial treatment for soil highly contaminated with benz(a)anthracene. Chemosphere 43(8):1127–1132.  https://doi.org/10.1016/S0045-6535(00)00182-X CrossRefGoogle Scholar
  62. Lee PKH, Johnson DR, Holmes VF, He J, Alvarez-Cohen L (2006) Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Appl Environ Microbiol 72:6161–6168.  https://doi.org/10.1128/AEM.01070-06 CrossRefGoogle Scholar
  63. Lee SS, Kaown D, Lee KK (2015) Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea. J Contam Hydrol 182:231–243.  https://doi.org/10.1016/j.jconhyd.2015.09.005 CrossRefGoogle Scholar
  64. Lei C, Sun Y, Khan E, Chen SS, Tsang DCW, Graham NJD, Ok YS, Yang X, Lin D, Feng Y, Li XD (2018) Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron. Chemosphere 196:9–17.  https://doi.org/10.1016/j.chemosphere.2017.12.151 CrossRefGoogle Scholar
  65. Liang CJ, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55(9):1225–1233.  https://doi.org/10.1016/j.chemosphere.2004.01.030 CrossRefGoogle Scholar
  66. Liao X, Wu Z, Li Y, Cao H, Su C (2019) Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs. Chemosphere 226:483–491.  https://doi.org/10.1016/j.chemosphere.2019.03.126 CrossRefGoogle Scholar
  67. Lin CC, Chen YH (2018) Feasibility of using nanoscale zero-valent iron and persulfate to degrade sulfamethazine in aqueous solutions. Sep Purif Technol 194:388–395.  https://doi.org/10.1016/j.seppur.2017.10.073 CrossRefGoogle Scholar
  68. Loffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Muller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evolut Microbiol 63(2):625–635.  https://doi.org/10.1099/ijs.0.034926-0 CrossRefGoogle Scholar
  69. Lu X, Wilson JT, Kampbell DH (2006) Relationship between geochemical parameters and the occurrence of Dehalococcoides DNA in contaminated aquifers. Water Resour Res.  https://doi.org/10.1029/2005wr004283 CrossRefGoogle Scholar
  70. Macbeth TW, Starr RC, Sorenson KS, Jr Goehlert R, Moor K (2005) ISCO impacts on indigenous microbes in a PCE/DNAPL-contaminated aquifer. In: Eighth international in situ and on-site bioremediation symposium. Battelle Press, Baltimore, MarylandGoogle Scholar
  71. MacKinnon LK, Thomson NR (2002) Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate. J Contam Hydrol 56(1–2):49–74.  https://doi.org/10.1016/S0169-7722(01)00203-0 CrossRefGoogle Scholar
  72. Matzek LW, Tipton MJ, Farmer AT, Steen AD, Carter KE (2018) Understanding electrochemically activated persulfate and its application to ciprofloxacin abatement. Environ Sci Technol 52(10):5875–5883.  https://doi.org/10.1021/acs.est.8b00015 CrossRefGoogle Scholar
  73. McCarty PL (2010) Groundwater contamination by chlorinated solvents: history, remediation technologies and strategies. In: Stroo H, Ward C (eds) In situ remediation of chlorinated solvent plumes. SERDP/ESTCP environmental remediation technology. Springer, New York.  https://doi.org/10.1007/978-1-4419-1401-9_1 CrossRefGoogle Scholar
  74. Medina R, David Gara PM, Fernández-González AJ, Rosso JA, Del Panno MT (2018) Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation. Sci Total Environ 618:518–530.  https://doi.org/10.1016/j.scitotenv.2017.10.326 CrossRefGoogle Scholar
  75. Morkin M, Devlin JF, Barker JF, Butler BJ (2000) In situ sequential treatment of a mixed contaminant plume. J Contam Hydrol 45(3–4):283–302.  https://doi.org/10.1016/S0169-7722(00)00111-X CrossRefGoogle Scholar
  76. Müller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. Strain VS and its environmental distribution. Appl Environ Microbiol 70:4880.  https://doi.org/10.1128/aem.70.8.4880-4888.2004 CrossRefGoogle Scholar
  77. Mundle K, Reynolds DA, West MR, Kueper BH (2007) Concentration rebound following in situ chemical oxidation in fractured clay. Groundwater 45(6):692–702.  https://doi.org/10.1111/j.1745-6584.2007.00359.x CrossRefGoogle Scholar
  78. Ndjou’ou AC, Bou-Nasr J, Cassidy D (2006) Effect of Fenton reagent dose on coexisting chemical and microbial oxidation in soil. Environ Sci Technol 40(8):2778–2783.  https://doi.org/10.1021/es0525152 CrossRefGoogle Scholar
  79. Nemecek J, Steinova J, Spanek R, Pluhar T, Pokorny P, Najmanova P, Knytl V, Cernik M (2018) Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents—a field test. Sci Total Environ 622–623:743–755.  https://doi.org/10.1016/j.scitotenv.2017.12.047 CrossRefGoogle Scholar
  80. Nijenhuis I, Kuntze K (2016) Anaerobic microbial dehalogenation of organohalides—state of the art and remediation strategies. Curr Opin Biotechnol 38:33–38.  https://doi.org/10.1016/j.copbio.2015.11.009 CrossRefGoogle Scholar
  81. Oh WD, Dong ZL, Lim TT (2016) Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl Catal B Environ 194:169–201.  https://doi.org/10.1016/j.apcatb.2016.04.003 CrossRefGoogle Scholar
  82. Pankow JF, Cherry JA (1996) Dense chlorinated solvents and other DNAPLs in groundwater: history, behavior, and remediation. Waterloo Press, Portland, ORGoogle Scholar
  83. Pardieck DL, Bouwer EJ, Stone AT (1992) Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: a review. J Contam Hydrol 9(3):221–242.  https://doi.org/10.1016/0169-7722(92)90006-Z CrossRefGoogle Scholar
  84. Paul J, Naik DB, Bhardwaj YK, Varshney L (2014) Studies on oxidative radiolysis of ibuprofen in presence of potassium persulfate. Radiat Phys Chem 100:38–44CrossRefGoogle Scholar
  85. Peng YP, Chen KF, Lin WH, Chang YC, Wu F (2016) A novel three-stage treatment train for the remediation of trichloroethylene-contaminated groundwater. RSC Adv 6(47):41247–41260.  https://doi.org/10.1039/C6RA04660F CrossRefGoogle Scholar
  86. Ravikumar JX, Gurol MD (1994) Chemical oxidation of chlorinated organics by hydrogen-peroxide in the presence of sand. Environ Sci Technol 28(3):394–400.  https://doi.org/10.1021/es00052a009 CrossRefGoogle Scholar
  87. Richardson SD, Lebron BL, Miller CT, Aitken MD (2011) Recovery of phenanthrene—degrading bacteria after simulated in situ persulfate oxidation in contaminated soil. Environ Sci Technol 45(2):719–725.  https://doi.org/10.1021/es102420r CrossRefGoogle Scholar
  88. Rifai HS, Newell CJ, Wiedemeier TH (2014) Natural attenuation of chlorinated solvents in ground water. Handbook of solvents. ChemTec Publishing, OxfordGoogle Scholar
  89. Rowland MA, Brubaker GR, Westray M, Morris D, Kohler K, McCool A (2001) Effects of potassium permanganate oxidation on subsurface microbial activity. Marshall Space Flight Center, NASA, Washington, DCGoogle Scholar
  90. Ryoo D, Shim H, Canada K, Barbieri P, Wood TK (2000) Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of pseudomonas stutzeri OX1. Nat Biotechnol 18:775–778.  https://doi.org/10.1038/77344 CrossRefGoogle Scholar
  91. Sahl J, Munakata-Marr J (2006) The effects of in situ chemical oxidation on microbiological processes: a review. Remediation 16:57–70.  https://doi.org/10.1002/rem.20091 CrossRefGoogle Scholar
  92. Sahl JW, Munakata-Marr J, Crimi ML, Siegrist RL (2007) Coupling permanganate oxidation with microbial dechlorination of tetrachloroethene. Water Environ Res 79:5–12.  https://doi.org/10.2175/106143006X136720 CrossRefGoogle Scholar
  93. Schmidt KR, Tiehm A (2008) Natural attenuation of chloroethenes: identification of sequential reductive/oxidative biodegradation by microcosm studies. Water Sci Technol 58(5):1137–1145.  https://doi.org/10.2166/wst.2008.729 CrossRefGoogle Scholar
  94. Scott CS, Chiu WA (2006) Trichloroethylene cancer epidemiology: a consideration of select issues. Environ Health Perspect 114(9):1471–1478.  https://doi.org/10.1289/ehp.8949 CrossRefGoogle Scholar
  95. Semprini L (1995) In situ bioremediation of chlorinated solvents. Environ Health Perspect 103(Suppl. 5):101–105.  https://doi.org/10.1289/ehp.95103s4101 CrossRefGoogle Scholar
  96. Sercu B, Jones ADG, Wu CH, Escobar MH, Serlin CL, Knapp TA, Andersen GL, Holden PA (2013) The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents. Microb Ecol 65(1):39–49.  https://doi.org/10.1007/s00248-012-0092-0 CrossRefGoogle Scholar
  97. Shapiro AM, Evans CE, Hayes EC (2017) Porosity and pore size distribution in a sedimentary rock: implications for the distribution of chlorinated solvents. J Contam Hydrol 203:70–84.  https://doi.org/10.1016/j.jconhyd.2017.06.006 CrossRefGoogle Scholar
  98. Shu H-Y, Chang M-C, Huang S-W (2015) UV irradiation catalyzed persulfate advanced oxidation process for decolorization of Acid Blue 113 wastewater. Desalin Water Treat 54:1013–1021.  https://doi.org/10.1080/19443994.2014.924033 CrossRefGoogle Scholar
  99. Siegrist RL, Urynowicz MA, Crimi ML, Lowe KS (2002) Genesis and effects of particles produced during in situ chemical oxidation using permanganate. J Environ Eng 128:1068–1079.  https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1068) CrossRefGoogle Scholar
  100. Siegrist RL, Crimi M, Simpkin TJ (2011) In situ chemical oxidation for groundwater remediation. Springer, New York.  https://doi.org/10.1007/978-1-4419-7826-4 CrossRefGoogle Scholar
  101. Stroo HF, Ward CH (2010) In situ remediation of chlorinated solvent plumes. Springer, New York.  https://doi.org/10.1007/978-1-4419-1401-9 CrossRefGoogle Scholar
  102. Stroo HF, Leeson A, Marqusee JA, Johnson PC, Ward CH, Kavanaugh MC, Sale TC, Newell CJ, Pennell KD, Lebrón CA, Unger M (2012) Chlorinated ethene source remediation: lessons learned. Environmen Sci Technol 46(12):6438–6447.  https://doi.org/10.1021/es204714w CrossRefGoogle Scholar
  103. Sutton NB, Grotenhuis JTC, Langenhoff AAM, Rijnaarts HHM (2011) Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies. J Soils Sediments 11:129–140.  https://doi.org/10.1007/s11368-010-0272-9 CrossRefGoogle Scholar
  104. Sutton NB, Langenhoff AAM, Lasso DH, van der Zaan B, van Gaans P, Maphosa F, Smidt H, Grotenhuis T, Rijnaarts HHM (2014) Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils. Appl Microbiol Biotechnol 98:2751–2764.  https://doi.org/10.1007/s00253-013-5256-4 CrossRefGoogle Scholar
  105. Sutton NB, Atashgahi S, Saccenti E, Grotenhuis T, Smidt H, Rijnaarts HHM (2015a) Microbial community response of an organohalide respiring enrichment culture to permanganate oxidation. PLoS ONE.  https://doi.org/10.1371/journal.pone.0134615 CrossRefGoogle Scholar
  106. Sutton NB, Atashgahi S, van der Wal J, Wijn G, Grotenhuis T, Smidt H, Rijnaarts HHM (2015b) Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents. Groundwater 53:261–270.  https://doi.org/10.1111/gwat.12209 CrossRefGoogle Scholar
  107. Tiehm A, Schmidt KR (2011) Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application. Curr Opin Biotechnol 22(3):415–421.  https://doi.org/10.1016/j.copbio.2011.02.003 CrossRefGoogle Scholar
  108. Tiehm A, Schmidt KR, Pfeifer B, Heidinger M, Ertl S (2008) Growth kinetics and stable carbon isotope fractionation during aerobic degradation of cis-1,2-dichloroethene and vinyl chloride. Water Res 42:2431–2438.  https://doi.org/10.1016/j.watres.2008.01.029 CrossRefGoogle Scholar
  109. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48.  https://doi.org/10.1016/S1748-0132(06)70048-2 CrossRefGoogle Scholar
  110. Tsai TT, Kao CM, Hong A, Liang SH, Chien HY (2008) Remediation of TCE-contaminated aquifer by an in situ three-stage treatment train system. Colloid Surf A 322(1–3):130–137.  https://doi.org/10.1016/j.colsurfa.2008.03.012 CrossRefGoogle Scholar
  111. Tsitonaki A, Smets BF, Bjerg PL (2008) Effects of heat-activated persulfate oxidation on soil microorganisms. Water Res 42(4–5):1013–1022.  https://doi.org/10.1016/j.watres.2007.09.018 CrossRefGoogle Scholar
  112. US EPA (2000) Toxicological review of vinyl chloride. Washington, DCGoogle Scholar
  113. US EPA (2002) Toxicological review of 1,1-dichloroethylene. Washington, DCGoogle Scholar
  114. US EPA (2012a) Toxicological review of tetrachloroethylene (perchloroethylene). Washington, DCGoogle Scholar
  115. US EPA (2012b) Toxicological review of trichloroethylene. Washington, DCGoogle Scholar
  116. Valderrama C, Alessandri R, Aunola T, Cortina JL, Gamisans X, Tuhkanen T (2009) Oxidation by Fenton’s reagent combined with biological treatment applied to a creosote-comtaminated soil. J Hazard Mater 166(2–3):594–602.  https://doi.org/10.1016/j.jhazmat.2008.11.108 CrossRefGoogle Scholar
  117. Villa RD, Trovó AG, Nogueira RFP (2008) Environmental implications of soil remediation using the Fenton process. Chemosphere 71(1):43–50.  https://doi.org/10.1016/j.chemosphere.2007.10.043 CrossRefGoogle Scholar
  118. Wang S, Yang Q (2016) Biodegradation kinetics of mixed microbial culture utilizing 1,1-DCE as the sole carbon source. Environ Eng Manag J 15(12):2789–2797.  https://doi.org/10.30638/eemj.2016.306 CrossRefGoogle Scholar
  119. Wang R, Gao L, Zheng M, Tian Y, Li J, Zhang L, Wu Y, Huang H, Qiao L, Liu W, Su G, Liu G, Liu Y (2018) Short- and medium-chain chlorinated paraffins in aquatic foods from 18 Chinese provinces: occurrence, spatial distributions, and risk assessment. Sci Total Environ 615:1199–1206.  https://doi.org/10.1016/j.scitotenv.2017.09.327 CrossRefGoogle Scholar
  120. Watts RJ, Udell MD, Rauch PA, Leung SW (1990) Treatment of pentachlorophenol-contaminated soils using Fenton’s reagent. Hazard Waste Hazard Mater 7:335–345.  https://doi.org/10.1089/hwm.1990.7.335 CrossRefGoogle Scholar
  121. Watts RJ, Bottenberg BC, Hess TF, Jensen MD, Teel AL (1999) Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environ Sci Technol 33:3432–3437.  https://doi.org/10.1021/es990054c CrossRefGoogle Scholar
  122. Watts RJ, Washington D, Howsawkeng J, Loge FJ, Teel AL (2003) Comparative toxicity of hydrogen peroxide, hydroxyl radicals, and superoxide anion to Escherichia coli. Adv Environ Res 7(4):961–968.  https://doi.org/10.1016/S1093-0191(02)00100-4 CrossRefGoogle Scholar
  123. Wen LL, Zhang Y, Pan YW, Wu WQ, Meng SH, Zhou C, Tang Y, Zheng P, Zhao HP (2015) The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors. Environ Sci Pollut Res Int 22:19039–19047.  https://doi.org/10.1007/s11356-015-5117-z CrossRefGoogle Scholar
  124. Williams-Johnson M, Mandell D, Anderson E (1997) ATSDR toxicological profile for trichloroethylene (updated)Google Scholar
  125. Wu C, Schaum J (2001) Sources, emissions and exposures for trichloroethylene and related chemicals. US Environmental Protection Agency, Washington, DCGoogle Scholar
  126. Xie G, Barcelona MJ (2003) Sequential chemical oxidation and aerobic biodegradation of equivalent carbon number-based hydrocarbon fractions in jet fuel. Environ Sci Technol 37(20):4751–4760.  https://doi.org/10.1021/es026260t CrossRefGoogle Scholar
  127. Yang JS, Yang JW (2018) Partitioning effects of nonionic surfactants on the solubilization of single or binary chlorinated solvents: batch and column experiments. J Ind Eng Chem 58:140–147.  https://doi.org/10.1016/j.jiec.2017.09.018 CrossRefGoogle Scholar
  128. Yeh CK-J, Wu H-M, Chen T-C (2003) Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems. J Hazard Mater 96(1):29–51.  https://doi.org/10.1016/S0304-3894(02)00147-4 CrossRefGoogle Scholar
  129. Zalesak M, Ruzicka J, Vicha R, Dvorackova M (2017) Cometabolic degradation of dichloroethenes by Comamonas testosteroni RF2. Chemosphere 186:919–927.  https://doi.org/10.1016/j.chemosphere.2017.07.156 CrossRefGoogle Scholar
  130. Zhang M, Chen X, Zhou H, Murugananthan M, Zhang Y (2015) Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. Chem Eng J 264:39–47.  https://doi.org/10.1016/j.cej.2014.11.060 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Environmental ChemistryUniversity of Chemistry and Technology PraguePragueCzech Republic

Personalised recommendations