Advertisement

Progress in the development of methods used for the abatement of microbial contaminants in ethanol fermentations: a review

  • Patrick T. Sekoai
  • Sizwe I. MhlongoEmail author
  • Obinna T. Ezeokoli
review paper
  • 251 Downloads

Abstract

Biofuel research and development roadmap is currently underway in several countries and is expected to pave a way for the establishment of a viable renewable energy sector that can compete with petroleum-based fuels. Ethanol fermentation has garnered increasing attention amongst various stakeholders (industries, governments, and academia) due to its economic and environmental merits. However, microbial contamination continues to be one of the major barriers in ethanologenic processes, resulting in low ethanol yields and thereby translating into economic losses. To this end, technological innovations geared towards effective elimination of microbial contamination are constantly being developed. This review explores and discusses the fermentation conditions that facilitate the growth of undesired microorganisms during ethanol fermentation processes. It highlights the methods that are currently used in biorefineries as well as innovative and advanced biotechnological methods currently being evaluated as viable alternative strategies to control or eliminate microbial contaminants in ethanol fermentations. These methods have the potential to minimize or control the contamination problem and could pave a way for the development of an efficient biofuel sector.

Keywords

Bacteriophages Ethanol fermentation Microbial contaminants Natural compounds Genetical-engineering Yeast 

Notes

References

  1. Abbasiliasi S, Tan JS, Tengku Ibrahim TAT, Bashokouh F, Ramakrishnan NR, Mustafa S, Ariff AB (2017) Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Adv 7(47):29395–29420Google Scholar
  2. Abbaspour M, Makhmalzadeh BS, Rezaee B, Shoja S, Ahangari Z (2015) Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur J Microbiol 8(10):e24239Google Scholar
  3. Adelabu BA, Kareem SO, Oluwafemi F, Adeogun IA (2019) Bioconversion of corn straw to ethanol by cellulolytic yeasts immobilized in Mucuna urens matrix. J King Saud Univ 31(1):136–141Google Scholar
  4. Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sustain Energy Rev 101:590–599Google Scholar
  5. Akmaz S, Adıgüzel ED, Yasar M, Erguven O (2013) The effect of Ag content of the chitosan–silver nanoparticle composite material on the structure and antibacterial activity. Adv Mater Sci Eng 2013:1–6Google Scholar
  6. Akram F, ul Haq I, Imran W, Mukhtar H (2018) Insight perspectives of thermostable endoglucanases for bioethanol production: a review. Renew Energy 122:225–238Google Scholar
  7. Albers E, Johansson E, Franzén CJ, Larsson C (2011) Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations. Biotechnol Biofuels 4(1):59Google Scholar
  8. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286Google Scholar
  9. Alli I, Fairbairn R, Baker BE, Garcia G (1983) The effects of ammonia on the fermentation of chopped sugarcane. Anim Feed Sci Technol 9(4):291–299Google Scholar
  10. Amorim HV, Lopes ML, De Castro Oliveira JV, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275Google Scholar
  11. An MZ, Tang YQ, Mitsumasu K, Liu ZS, Shigeru M, Kenji K (2011) Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. Biotechnol Lett 33:1367–1374Google Scholar
  12. Aquarone E (1960) Penicillin and tetracycline as contamination control agents in alcoholic fermentation of sugar cane Molasses. Appl Microbiol 8(5):263–268Google Scholar
  13. Arkoun M, Daigle F, Heuzey MC, Ajji A (2017a) Antibacterial electrospun chitosan-based nanofibers: a bacterial membrane perforator. Food Sci Nutr 5(4):865–874Google Scholar
  14. Arkoun M, Daigle F, Heuzey MC, Ajji A (2017b) Mechanism of action of electron chitosan-based nanofibers against meat spoilage and pathogenic bacteria. Molecules 22(4):585Google Scholar
  15. Awan AR, Blount BA, Bell DJ, Shaw WM, Ho JCH, MnKiernam RM, Ellis T (2017) Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker’s yeast. Nat Commun 8:15202Google Scholar
  16. Ayeni AO, Daramola MO, Sekoai PT, Adeeyo O, Garba MJ, Awosusi AA (2018a) Statistical modelling and optimization of alkaline peroxide oxidation pretreatment process on rice husk cellulosic biomass to enhance enzymatic convertibility and fermentation to ethanol. Cellulose 25(4):2487–2504Google Scholar
  17. Ayeni AO, Daramola MO, Awoyomi A, Elehinafe FB, Ogunbiyi A, Sekoai PT, Folayan JA (2018b) Morphological modification of Chromolaena odorata cellulosic biomass using alkaline peroxide oxidation pretreatment methodology and its enzymatic conversion to biobased products. Cogent Eng 5:1Google Scholar
  18. Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AZM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep 10:52–61Google Scholar
  19. Banat IM, Singh-Nee Nigam P, Singh D, McHale AP, Marchant R (1998) Ethanol production using thermotolerant/thermophilic yeast strains: potential future exploitation. In: Pandey A (ed) Advances in biotechnology. Educational Publishers & Distributors, Delhi, pp 105–119Google Scholar
  20. Barth D, de Souza Monteiro AR, da Costa MM, Virkajärvi I, Sacon V, Wilhelmsom A (2014) DesinFix TM 135 in fermentation process for bioethanol production. Braz J Microbiol 45(1):323–325Google Scholar
  21. Basílio AC, de Araújo PR, de Morais JO, da Silva Filho EA, de Morais Jr MA, Simões DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56(4):322–326Google Scholar
  22. Bassi APG, Meneguello L, Paraluppi AL, Sanches BCP, Ceccato-Antonini SR (2018) Interaction of Saccharomyces cerevisiae-Lactobacillus fermentum-Dekkera bruxellensis and feedstock on fuel ethanol fermentation. Antonie Van Leeuwenhoek 111(9):1661–1672Google Scholar
  23. Basso LC, Amorim HV, Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8(7):1155–1162Google Scholar
  24. Basso TO, Gomes FS, Lopes ML, De Amorim HV, Eggleston G, Basso LC (2014) Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie Van Leeuwenhoek 105(1):169–177Google Scholar
  25. Bayrock DP, Thomas KC, Ingledew WM (2003) Control of Lactobacillus contaminants in continuous fuel ethanol fermentations by constant or pulsed addition of penicillin G. Appl Microbiol Biotechnol 62(5–6):498–502Google Scholar
  26. Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53(4):387–394Google Scholar
  27. Behera SS, Ray RC, Zdolec N (2018) Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. Biomed Res Int 2018:18Google Scholar
  28. Behr J, Vogel RF (2009) Mechanisms of hop inhibition: hop ionophores. J Agric Food Chem 57(14):6074–6081Google Scholar
  29. Behr J, Vogel RF (2010) Mechanisms of hop inhibition include the transmembrane redox reaction. Appl Environ Microbiol 76(1):142–149Google Scholar
  30. Behr J, Gänzle MG, Vogel RF (2006) Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl Environ Microbiol 72(10):6483–6492Google Scholar
  31. Bellich B, D’Agostino I, Semeraro S, Gamini A, Cesàro A (2016) “The good, the bad and the ugly” of Chitosans. Mar Drugs 14(5):99Google Scholar
  32. Beltran G, Torija MJ, Novo M, Ferrer N, Poblet M, Guillamón JM, Rozès N, Mas A (2002) Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. System Appl Microbiol 25(2):287–293Google Scholar
  33. Berbegal C, Peña N, Russo P, Grieco F, Pardo I, Ferrer S, Spano G, Capozzi V (2016) Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiol 57:187–194Google Scholar
  34. BetaHop (2019) Hops-derived fermentation aids for ethanol production. https://betatec.com/fermentation-aids/. Accessed 6 March 2019
  35. Bhattacharya S, Virani S, Zavro M, Haas GJ (2003) Inhibition of Streptococcus mutans and other oral streptococci by hop (Humulus lupulus L.) constituents. Econ Bot 57(1):118–125Google Scholar
  36. Binod P, Gnansounou E, Sindhu R, Pandey A (2018) Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour Technol Rep 5:317–325Google Scholar
  37. Bischoff KM, Skinner-Nemec KA, Leathers TD (2007) Antimicrobial susceptibility of Lactobacillus species isolated from commercial ethanol plants. J Ind Microbiol Biotechnol 34(11):739–744Google Scholar
  38. Bischoff KM, Liu S, Leathers TD, Worthington RE, Rich JO (2009) Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol Bioeng 103(1):117–122Google Scholar
  39. Bonatelli ML, Quecine MC, Silva MS, Labate CA (2017) Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production. FEMS Microbiol Lett 364(17):fnx159Google Scholar
  40. Branco P, Sabir F, Diniz M, Carvalho L, Albergaria H, Prista C (2019) Biocontrol of Brettanomyces/Dekkera bruxellensis in alcoholic fermentations using saccharomycin-overproducing Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 103(7):3073–3083Google Scholar
  41. Brexó RP, Sant’Ana As (2017) Impact and significance of microbial contamination during fermentation for bioethanol production. Renew Sustain Energy Rev 73:423–434Google Scholar
  42. Bucur FL, Grigore-Gurgu L, Crauwels P, Riedel CU, Nicolau AL (2018) Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Front Microbiol 9:2700Google Scholar
  43. Caniça M, Manageiro V, Abriouel H, Moran-Gilad J, Franz CMAP (2018) Antibiotic resistance in foodborne bacteria. Trends Food Sci Technol 84:41–44Google Scholar
  44. Capecchi L, Galbe M, Wallberg O, Mattarelli P, Barbanti L (2016) Combined ethanol and methane production from switchgrass (Panicum virgatum L.) impregnated with lime prior to steam explosion. Biomass Bioenergy 90:22–31Google Scholar
  45. Carrillo-Nieves D, Alanís MJR, Quiroz Rd, Ruiz HC, Iqbal HMN, Parra-Saldívar R (2019) Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew Sustain Energy Rev 102:63–74Google Scholar
  46. Casquete R, Castro SM, Teixeira P (2017) Evaluation of the combined effect of chitosan and lactic acid bacteria in Alheira (fermented meat sausage) Paste. J Food Proc Preserv 14(2):1–8Google Scholar
  47. Catchpole CR, Andrews JM, Brenwald N, Wise R (1997) A reassessment of the in vitro activity of colistin sulphomethate sodium. J Antimicrob Chem 39:255–260Google Scholar
  48. Ceccato-Antonini SR (2018) Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations. World J Microbiol Biotechnol 34(6):1–11Google Scholar
  49. Ceylan Z, Sengor GFU, Yilmaz MT (2018) Nanoencapsulation of liquid smoke/thymol combination in chitosan nanofibers to delay microbiological spoilage of sea bass (Dicentrachus labrax). J Food Eng 229:43–49Google Scholar
  50. Chadwick LR, Pauli GF, Farnsworth NR (2006) The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine 13:119–131Google Scholar
  51. Chang IS, Kim BH, Shin PK, Lee WK (1995) Bacterial contamination and Its effects on ethanol fermentation. J Microbiol Biotechnol 5(6):309–314Google Scholar
  52. Chang IS, Kim BH, Shin PK (1997) Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl Environ Microbiol 63(1):1–6Google Scholar
  53. Cheah WY, Show PL, Ng IS, Lin GY, Chiu CY, Chang YK (2019) Antibacterial activity of quaternized chitosan modified nanofiber membrane. Int J Biol Macromol 126:569–577Google Scholar
  54. Chen H, Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sustain Energy Rev 57:468–478Google Scholar
  55. Chen S, Xu Z, Li X, Yu J, Cai M, Jin M (2018) Integrated bioethanol production from mixtures of corn and corn stover. Bioresour Technol 258:18–25Google Scholar
  56. Chintagunta AD, Jacob S, Banerjee R (2016) Integrated bioethanol and biomanure production from potato waste. Waste Manag 49:320–325Google Scholar
  57. Choudhury RS, Goswami A (2013) Supramolecular reactive sulfur nanoparticles: a novel and efficient antimicrobial agent. J Appl Microbiol 114(1):1–10Google Scholar
  58. Chung YC, Bakalinsky A, Penner MH (2005) Enzymatic saccharification and fermentation of xylose-optimized dilute acid-treated lignocellulosics. Appl Biochem Biotechnol 124:947–961Google Scholar
  59. Costa VM, Basso TO, Angeloni LHP, Oetterer M, Basso LC (2008) Production of acetic acid, ethanol and optical isomers of lactic acid by Lactobacillus strains from industrial ethanol fermentation. Ciênc Agrotec 32(2):503–509Google Scholar
  60. Costa OY, Souto BM, Tupinambá DD, Bergmann JC, Kyaw CM, Kruger RH, Barreto CC, Quirino BF (2015) Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. J Ind Microbiol Biotechnol 42(1):73–84Google Scholar
  61. Costa MAS, Cerri BC, Ceccato-Antonini SR (2018) Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production. Appl Microbiol 66:77–85Google Scholar
  62. Cousin FJ, Le Guellec R, Chuat V, Dalmasso M, Laplace JM, Cretenet M (2019) Multiplex PCR for rapid identification of major lactic acid bacteria genera in cider and other fermented foods. Int J Food Microbiol 291:17–24Google Scholar
  63. Cui H, Bai M, Li C, Liu R, Lin L (2018) Fabrication of chitosan nanofibers containing tea tree of liposomes against Salmonella spp. in chicken. LWT 96:671–678Google Scholar
  64. Cunningham S, Stewart GG (1998) Effects of high-gravity brewing and acid washing on brewers’ yeast. J Am Soc Brew Chem 56(1):12–18Google Scholar
  65. Day WH, Serjak WC, Stratton JR, Stone L (1954) Contamination inhibition, antibiotics as contamination-control agents in grain alcohol fermentations. J Agric Food Chem 2(5):252–258Google Scholar
  66. de Farias BS, Sant’ Anna Cadaval Junior TR, de Almeida Pinto LA (2019) Chitosan-functionalized nanofibers: a comprehensive review on challenges and prospects for food applications. Int J Biol Macromol 123:210–220Google Scholar
  67. de Souza Liberal AT, Basílio AC, do Monte Resende A, Brasileiro BT, da Silva-Filho FA, de Morais JO, Simões DA, de Morais Jr MA (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102(2):538–547Google Scholar
  68. De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification and food applications. J Mol Microbiol Biotechnol 13:194–199Google Scholar
  69. Denby CM, Li RA, Vu VT, Costello Z, Lin W, Chan LJG, Williams J, Donaldson B, Bamforth CW, Petzold CJ, Scheller HV, Martin HG, Keasling JD (2018) Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat Commun 9:965Google Scholar
  70. Dhiman SS, David A, Braband VW, Hussein A, Salem DR, Sani RK (2017) Improved bioethanol production from corn stover: role of enzymes, inducers and simultaneous product recovery. Appl Energy 208:1420–1429Google Scholar
  71. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474Google Scholar
  72. Díez-Antolínez R, Hijosa-Valsero M, Paniagua-García AI, Garita-Cambronero J, Gómez X (2018) Yeast screening and cell immobilization on inert supports for ethanol production from cheese whey permeate with high lactose loads. PLoS ONE 13(12):e0210002Google Scholar
  73. Dimopoulou M, Hatzikamari M, Masneuf-Pomarede I, Albertin W (2019) Sulfur dioxide response of Brettanomyces bruxellensis strains isolated from Greek wine. Food Microbiol 78:155–163Google Scholar
  74. Dodo CM, Mamphweli S, Okoh O (2017) Bioethanol production from lignocellulosic sugarcane leaves and tops. J Energy S Afr 28(3):1–11Google Scholar
  75. Doğan A, Demirci S, Aytekin AÖ, Şahin F (2014) Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 174:28–42Google Scholar
  76. du Plessis HW, Dicks LMT, Pretorius IS, Lambrechts MG, du Toit M (2004) Identification of lactic acid bacteria isolated from South African brandy base wines. Int J Food Microbiol 91(1):19–29Google Scholar
  77. du Toit M, Engelbrecht L, Lerm E, Krieger-Weber S (2011) Lactobacillus: the next generation of malolactic fermentation starter cultures—an overview. Food Bioprocess Technol 4(6):876–906Google Scholar
  78. Duarte JC, Rodrigues JAR, Moran PJS, Valença GP, Nunhez JR (2013) Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express 3:31Google Scholar
  79. Ducrotté P, Sawant P, Jayanthi V (2012) Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. World J Gastroenterol 18(30):4012–4018Google Scholar
  80. DuPont (2018) DuPont industrial biosciences granted US patent for FERMASURE. Available at: http://ethanolproducer.com/articles/15164/dupont-industrial-biosciences-granted-us-patent-for-fermasure. Accessed on 06 March 2019
  81. Dzionek A, Wojcieszyńska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electron J Biotechnol 23:28–36Google Scholar
  82. Egusa M, Iwamoto R, Izawa H, Morimoto M, Saimoto H, Kaminaka H, Ifuku S (2015) Characterization of chitosan nanofiber sheets for antifungal application. Int J Mol Sci 16(11):26202–26210Google Scholar
  83. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23(4):619–629Google Scholar
  84. Elmaci BS, Gülgör G, Tokatli M, Erten H, İşci A, Özçelik F (2015) Effectiveness of chitosan against wine-related microorganisms. Antonie Van Leeuwenhoek 107(3):675–686Google Scholar
  85. Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng: C 32(7):1711–1726Google Scholar
  86. Evans ME, Feola DJ, Rapp RP (1999) Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 33:960–967Google Scholar
  87. Ferrando V, Quiberoni A, Reinhemer J, Suárez V (2015) Resistance of functional Lactobacillus plantarum strains against food stress conditions. Food Microbiol 48:63–71Google Scholar
  88. Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300(6):357–362Google Scholar
  89. Fraczek MG, Naseeb S, Delneri D (2018) History of genome editing in yeast. Yeast 35:361–368Google Scholar
  90. Franz CMAP, den Besten HMW, Böhnlein C, Gareis M, Zwietering MH, Fusco V (2018) Microbial food safety in the 21st century: emerging challenges and foodborne pathogenic bacteria. Trends Food Sci Technol 81:155–158Google Scholar
  91. G-Alegría E, López I, Ruiz J, Sáenz J, Fernández E, Zarazaga M, Dizy M, Torres C, Ruiz-Larrea F (2004) High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol Lett 230(1):53–61Google Scholar
  92. Gales AC, Reis AO, Jones RN (2001) Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. J Clin Microbiol 39:183–190Google Scholar
  93. Gales AC, Jones RN, Sader HS (2006) Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001–2004). Clin Microbiol Infect 12:315–321Google Scholar
  94. Gallo CR (1989) Determinac¸ão da microbiota bacteriana de mosto e de dornas de fermentac¸ão alcoólica. Campinas. Ph.D. Thesis, Universidade Estadual de Campinas, p. 387. http://www.bibliotecadigital.unicamp.br/document/?code=000038046&fd=y (in Portuguese)
  95. Garcia Peña LV, Petkova P, Margalef-Marti R, Vives M, Aguilar L, Gallegos A, Francesko A, Perelshtein I, Gedanken A, Mendoza E, Casas-Zapata JC, Morató J, Tzanov T (2017) Hybrid chitosan–silver nanoparticles enzymatically embedded on cork filter material for water disinfection. Ind Eng Chem Res 56(13):3599–3606Google Scholar
  96. Garg P, Park YJD, Sharma D, Wang TN (2010) Antimicrobial effect of chitosan on the growth of lactic acid bacteria strains known to spoil beer. JEMI 14:7–12Google Scholar
  97. Garrido-Maestu A, Ma Z, Paik SYR, Chen N, Ko S, Tong Z, Jeong KCC (2018) Engineering of chitosan-derived nanoparticles to enhance antimicrobial activity against foodborne pathogen Escherichia coli O157:H7. Carbohydr Polym 197:623–630Google Scholar
  98. Gasparini M, Aurilia C, Lubian D, Testa M (2016) Herbal remedies and the self-treatment of stress: an Italian survey. Eur J Int Med 8(4):465–470Google Scholar
  99. Gassara F, Antzak C, Ajila CM, Sarma SJ, Brar SK, Verma M (2015) Chitin and chitosan as natural flocculants for beer clarification. J Food Eng 166:80–85Google Scholar
  100. Ge B, Domesle KJ, Yang Q, Young SR, Rice-Trujillo CL, Jones SMB, Gaines SA, Keller MW, Li X, Piñeiro SA (2017) Effects of low concentrations of erythromycin, penicillin, and virginiamycin on bacterial resistance development in vitro. Sci Rep 7(1):11017Google Scholar
  101. Georgieva R, Yocheva L, Tserovska L, Zhelezova G, Stefanova N, Atanasova A, Danguleva A, Ivanova G, Karapetkov N, Rumyan N, Karaivanova E (2015) Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol Biotechnol Equip 29(1):84–91Google Scholar
  102. Ghaderi H, Moini A, Pishvaee MS (2018) A multi-objective robust possibilistic programming approach to sustainable switchgrass-based bioethanol supply chain network design. J Clean Prod 179:368–406Google Scholar
  103. Ghalayani EA, Lazazzera B, Draghi L, Farè S, Chiesa R, De Nardo L, Billi F (2019) Bactericidal activity of gallium-doped chitosan coatings against staphylococcal infection. J Appl Microbiol 126(1):87–101Google Scholar
  104. Gibbons WR, Westby CA, Arnold E (1988) Semicontinuous diffusion fermentation of fodder beets for fuel ethanol and cubed protein feed production. Biotechnol Bioeng 31(7):696–704Google Scholar
  105. Giersch RM, Finnigan GC (2017) Yeast still a beast: diverse applications of CRISPR/Cas editing technology in S. cerevisiae. Yale J Biol Med 90:643–651Google Scholar
  106. Haas GJ, Barsoumian R (1994) Antimicrobial activity of hop resins. J Food Prot 57:59–61Google Scholar
  107. Hafid HS, Nor ‘Aini AR, Mokhtar MN, Talib AT, Baharuddin AS, Umi Kalsom MS (2017) Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Manag 67:95–105Google Scholar
  108. Hammond GP, Mansell RVM (2018) A comparative thermodynamic evaluation of bioethanol processing from wheat straw. Appl Energy 224:136–146Google Scholar
  109. Hancock REW (1997) Peptide antibiotics. Lancet 349:418–422Google Scholar
  110. Haris S, Fang C, Bastidas-Oyanedel JR, Prather KJ, Schmidt JE, Thomsen MH (2018) Natural antibacterial agents from arid-region pretreated lignocellulosic biomasses and extracts for the control of lactic acid bacteria in yeast fermentation. AMB Express 8(1):127Google Scholar
  111. Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294Google Scholar
  112. He X, Hwang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24(4):671–681Google Scholar
  113. Hege M, Jung F, Sellmann C, Jin C, Ziegenhardt D, Hellerbrand C, Bergheim I (2018) An iso-α-acid-rich extract from hops (Humulus lupulus) attenuates acute alcohol-induced liver steatosis in mice. Nutrition 45:68–75Google Scholar
  114. Hermsen ED, Sullivan CJ, Rotschafer JC (2003) Polymyxins: pharmacology, pharmacokinetics, pharmacodynamics, and clinical applications. Infect Dis Clin N Am 17:545–562Google Scholar
  115. Hernández-Heredia S, Pérez-Nevado F, Ruiz-Moyano S, Serradilla MJ, Villalobos MC, Martín A, Córdoba MG (2018) Spoilage yeasts: what are the sources of contamination of foods and beverages? Int J Food Microbiol 286:98–110Google Scholar
  116. Hong K-K, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671–2690Google Scholar
  117. Hu K, Liu J, Li B, Liu L, Gharibzahedi SMT, Su Y, Jiang Y, Tan J, Wang W, Guo Y (2018) Global research trends in food safety in agriculture and industry from 1991 to 2018: a data-driven analysis. Food Sci Technol 85:262–276Google Scholar
  118. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253Google Scholar
  119. Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR (2011) Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antimicrob Agents Chemother 55(7):3432–3438Google Scholar
  120. Huang X, Bao X, Liu Y, Wang Z, Hu Q (2017) Catechol-functional chitosan/silver nanoparticle composite as a highly effective antibacterial agent with species-specific mechanisms. Sci Rep 7(1):1860Google Scholar
  121. Ifuku S (2014) Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19(11):18367–18380Google Scholar
  122. Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I (2006) Electrospun nano-fibre mats with antibacterial properties from quaternized chitosan and poly (vinyl alcohol). Carbohydr Res 341(12):2098–2107Google Scholar
  123. Ignatova M, Manolova N, Markova N, Rashkov I (2009) Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci 9(1):102–111Google Scholar
  124. Intaramas K, Sakdaronnarong C, Liu CG, Mehmood MA, Jonglertjunya W, Laosiripojana N (2019) Sequential catalytic-mixed-milling and thermohydrolysis of cassava starch improved ethanol fermentation. Food Bioprod Proc 114:72–84Google Scholar
  125. Jampaphaeng K, Ferrocino I, Giordano M, Rantsiou K, Maneerat S, Cocolin L (2018) Microbiota dynamics and volatilome profile during stink bean fermentation (Sataw-Dong) with Lactobacillus plantarum KJ03 as a starter culture. Food Microbiol 76:91–102Google Scholar
  126. Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT (2017) Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 17(5):1–20Google Scholar
  127. Jin G, Zhu Y, Xu Y (2017) Mystery behind Chinese liquor fermentation. Trends Food Sci Technol 63:18–28Google Scholar
  128. Jung J, Kasi G, Seo J (2018) Development of functional antimicrobial papers using chitosan/starch-silver nanoparticles. Int J Biol Macromol 112:530–536Google Scholar
  129. Jutakanoke R, Leepipatpiboon N, Tolieng V, Kitpreechavanich V, Srinorakutara T, Akaracharanya A (2012) Sugarcane leaves: pretreatment and ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 39:283–289Google Scholar
  130. Kabir E, Kumar V, Kim K-H, Yip ACK, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manag 225:261–271Google Scholar
  131. Kalaivani R, Maruthupandy M, Muneeswaran T, Beevi AH, Anand M, Ramakritinan CM, Kumaraguru AK (2018) Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Lab Med 2(1):30–35Google Scholar
  132. Karabin M, Hudcova T, Jelinek L, Dostalek P (2015) Biotransformations and biological activities of hop flavonoids. Biotechnol Adv 33(6):1063–1090Google Scholar
  133. Katsimpouras C, Dedes G, Bistis P, Kekos D, Kalogiannis KG, Topakas E (2018) Acetone/water oxidation of corn stover for the production of bioethanol and prebiotic oligosaccharides. Bioresour Technol 270:208–215Google Scholar
  134. Keiler AM, Helle J, Bader MI, Ehrhardt T, Nestler K, Kretzschmar G, Bernhardt R, Vollmer G, Nikolić D, Bolton JL, Pauli GF, Chen SN, Dietz BM, van Breemen RB, Zierau O (2017) A standardized Humulus lupulus (L.) ethanol extract partially prevents ovariectomy-induced bone loss in the rat without induction of adverse effects in the uterus. Phytomedicine 34:50–58Google Scholar
  135. Keles G, Demirci U (2011) The effect of homofermentative and heterofermentative lactic acid bacteria on conservation characteristics of baled triticale—Hungarian vetch silage and lamb performance. Anim Feed Sci Technol 164(1–2):21–28Google Scholar
  136. Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17Google Scholar
  137. Keskin S, Şirin Y, Çakir HE, Keskin M (2019) An investigation of Humulus lupulus L.: phenolic composition, antioxidant capacity and inhibition properties of clinically important enzymes. S Afr J Bot 120:170–174Google Scholar
  138. Khatibi PA, McMaster NJ, Musser R, Schmale DG (2014a) Survey of mycotoxins in corn distillers’ dried grains with solubles from seventy-eight ethanol plants in twelve states in the U.S. in 2011. Toxins 6(4):1155–1168Google Scholar
  139. Khatibi P, Roach D, Donovan D, Hughes S, Bischoff K (2014b) Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation. Biotechnol Biofuels 7:104Google Scholar
  140. Kim HS, Kim NR, Yang J, Choi W (2011) Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 91:1159–1172Google Scholar
  141. Kim HM, Song Y, Wi SG, Bae HJ (2017) Production of D-tagatose and bioethanol from onion waste by an intergrating bioprocess. J Biotechnol 260:84–90Google Scholar
  142. Kim JS, Daum MA, Jin YS, Miller MJ (2018) Yeast derived lysa2 can control bacterial contamination in ethanol fermentation. Viruses 10(6):281Google Scholar
  143. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci 100(4):1990–1995Google Scholar
  144. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27Google Scholar
  145. Le Borgne S (2012) Genetic engineering of industrial strains of Saccharomyces cerevisiae. Methods Mol Biol 824:451–465Google Scholar
  146. Leite IR, Faria JR, Marquez LDS, Reis MHM, de Resende MM, Ribeiro EJ, Cardoso VL (2013) Evaluation of hop extract as a natural antibacterial agent in contaminated fuel ethanol fermentations. Fuel Proc Technol 106:611–618Google Scholar
  147. Li T, McCluskey JJ (2017) Consumer preferences for second-generation bioethanol. Energy Econ 61:1–7Google Scholar
  148. Lin X, Han P, Donga S, Li H (2015) Preparation and application of bacteriophage-loaded chitosan microspheres for controlling Lactobacillus plantarum contamination in bioethanol fermentation. RSC Adv 5:69886–69893Google Scholar
  149. Lin L, Liao X, Surendhiran D, Cui H (2018) Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Pack Shelf Life 17:134–141Google Scholar
  150. Lino FSO, Basso TO, Sommer MOA (2018) A synthetic medium to simulate sugarcane molasses. Biotechnol Biofuels 11:221Google Scholar
  151. Liu M, Bischoff KM, Gill JJ, Mire-Criscione MD, Berry JD, Young R, Summer EJ (2015) Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum. Biotechnol Biofuels 8:132Google Scholar
  152. Liu S, Laaksonen O, Kortesniemi M, Kalpio M, Yang B (2018) Chemical composition of bilberry wine fermented with non-Saccharomyces yeasts (Torulaspora delbrueckii and Schizosaccharomyces pombe) and Saccharomyces cerevisiae in pure, sequential and mixed fermentations. Food Chem 266:262–274Google Scholar
  153. López I, López R, Santamaría P, Torres CF, Ruiz-Larrea F (2008) Performance of malolactic fermentation by inoculation of selected Lactobacillus plantarum and Oenococcus oeni strains isolated from Rioja red wines. Vitis 47(2):123–129Google Scholar
  154. López-León T, Carvalho EL, Seijo B, Ortega-Vinuesa JL, Bastos-González D (2005) Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behaviour. J Colloid Interface Sci 283(2):344–351Google Scholar
  155. Love MJ, Bhandari D, Dobson RCJ, Billington C (2018) Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics 7(1):17Google Scholar
  156. Lucena BTL, Santos BM, Moreira JLS, Moreira APB, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, de Morais Jr MA (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbial 10:298–306Google Scholar
  157. Lucio O, Pardo I, Heras JM, Krieger S, Ferrer S (2018) Influence of yeast strains on managing wine acidity using Lactobacillus plantarum. Food Control 92:471–478Google Scholar
  158. Madeira-Jr JV, Gombert AK (2018) Towards high-temperature fuel ethanol production using Kluyveromyces marxianus: on the search for plug-in strains for the Brazilian sugarcane-based biorefinery. Biomass Bioenergy 119:217–228Google Scholar
  159. Mahboubi A, Cayli B, Bulkan G, Doyen W, De Wever H, Taherzadeh MJ (2018) Removal of bacterial contamination from bioethanol fermentation system using membrane bioreactor. Fermentation 4(4):88Google Scholar
  160. Maietti A, Brighenti V, Bonetti G, Tedeschi P, Prencipe FP, Benvenuti S, Brandolini V, Pellati F (2017) Metabolite profiling of flavonols and in vitro antioxidant activity of young shoots of wild Humulus lupulus L. (hop). J Pharm Biomed Anal 142:28–34Google Scholar
  161. Mans R, Daran JMG, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56Google Scholar
  162. Martins AF, Facchi SP, Follmann HD, Pereira AG, Rubira AF, Muniz EC (2014) Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. Int J Mol Sci 15(11):20800–20832Google Scholar
  163. Mathara JM, Schillinger U, Kutima PM, Mbungua SK, Guigas C, Franz C (2008) Functional properties of Lactobacillus plantarum strains isolated from Maasai traditional milk products in Kenya. Curr Microbiol 56:315–321Google Scholar
  164. Mendoza LM, Neef A, Vignolo G, Belloch C (2017) Yeast diversity during the fermentation of Andean chicha: a comparison of high-throughput sequencing and culture-dependent approaches. Food Microbiol 67:1–10Google Scholar
  165. Meneghin SP, Reis FC, de Almeida PG, Ceccato-Antonini SR (2008) Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation. Braz J Microbiol 39(2):337–343Google Scholar
  166. Miller EL (2002) The penicillins: a review and update. J Midwifery Womens Health 47(6):426–434Google Scholar
  167. Miller BJ, Franz CM, Cho GS, du Toit M (2011) Expression of the malolactic enzyme gene (mle) from Lactobacillus plantarum under winemaking conditions. Curr Microbiol 62(6):1682–1688Google Scholar
  168. Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci 105:7393–7398Google Scholar
  169. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29(2):205–220Google Scholar
  170. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4):53Google Scholar
  171. Mohapatra S, Mishra C, Behera SS, Thatoi H (2017) Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—a review. Renew Sustain Energy Rev 78:1007–1032Google Scholar
  172. Moodley P, Rorke DCS, Gueguim Kana EB (2019) Development of artificial neural network tools for predicting sugar yields from inorganic salt-based pretreatment of lignocellulosic biomass. Bioresour Technol 273:682–686Google Scholar
  173. Moreno-García J, García-Martínez T, Mauricio JC, Moreno J (2018) Yeast immobilization systems for alcoholic wine fermentations: actual trends and future perspectives. Front Microbiol 9:241Google Scholar
  174. Moshi AP, Hosea KMM, Elisante E, Mamo G, Mattiasson B (2015) High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis. Bioresour Technol 180:128–136Google Scholar
  175. Muthaiyan A, Ricke SC (2010) Current perspectives on detection of microbial contamination in bioethanol fermentors. Bioresour Technol 101:5033–5042Google Scholar
  176. Muthaiyan A, Limayem A, Ricke SC (2011) Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Prog Energy Combust Sci 37:351–370Google Scholar
  177. Narendranath NV, Power R (2005) Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol 71:2239–2243Google Scholar
  178. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM (2012) Endolysins as antimicrobials. Adv Virus Res 83:299–365Google Scholar
  179. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412Google Scholar
  180. Niknejad F, Mohammadi M, Khomeiri M, Razavi SH (2015) Antifungal and antioxidant effects of hops (Humulus lupulus L.) flower extracts. Adv Environ Biol 8(824):395–401Google Scholar
  181. Nitti P, Gallo N, Natta L, Scalera F, Palazzo B, Sannino A, Gervaso F (2018) Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. J Healthc Eng 2018:12Google Scholar
  182. Nkosi BD, Meeske R, van der Merwe HJ, Groenewald IB (2010) Effects of homofermentative and heterofermentative bacterial silage inoculants on potato hash silage fermentation and digestibility in rams. Anim Feed Sci Technol 157(3–4):195–200Google Scholar
  183. No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72(5):R87–R100Google Scholar
  184. Nordmeier A, Chidambaram D (2018) Use of Zymomonas mobilis immobilized in doped calcium alginate threads for ethanol production. Energy 165(B):603–609Google Scholar
  185. Nordmeier A, Chidambaram D (2019) Use of electrospun threads in immobilized cell reactors for continuous ethanol production. Colloids Surf B: Biointerf.  https://doi.org/10.1016/j.colsurfb.2019.05.013 (in press) Google Scholar
  186. Nuutinen T (2018) Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 157:198–228Google Scholar
  187. Oh HI, Kim YJ, Chang EJ, Kim JY (2001) Antimicrobial characteristics of chitosans against food spoilage microorganisms in liquid media and mayonnaise. Biosci Biotechnol Biochem 65(11):2378–2383Google Scholar
  188. Oh EJ, Wei N, Kwak S, Kim H, Jin YS (2019) Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae. J Biotechnol 292:1–4Google Scholar
  189. Ohsugi M, Basnet P, Kadota S, Ishii E, Tamura T, Okumura Y, Namba T (1997) Antibacterial activity of traditional medicines and an active constituent lupulone from Humulus lupulus against Helicobacter pylori. J Tradit Med 14:186–191Google Scholar
  190. Oliva-Neto P, Dorta C, Carvalho AFA, Lima VMG, Silva DF (2013) The Brazilian technology of fuel ethanol fermentation—yeast inhibition factors and new perspectives to improve the technology. In: Méndez-Vilas A (ed) Materials and processes for energy: communicating current research and technological developments. Formatex Research Center, Badajoz, pp 371–379Google Scholar
  191. Oliveira AS, Weinberg ZG, Ogunade IM, Cervantes AAP, Arriola KG, Jiang Y, Kim D, Li X, Gonçalves MCM, Vyas D, Adesogan AT (2017) Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J Dairy Sci 100(6):4587–4603Google Scholar
  192. Oliveira H, São-José C, Azeredo J (2018) Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses 10(6):292Google Scholar
  193. Overk CR, Yao P, Chadwick LR, Nikolic D, Sun Y, Cuendet MA, Deng Y, Hedayat AS, Pauli GF, Farnsworth NR, Van RB (2005) Comparison of the in vitro estrogenic activities of compounds from hops (Humulus lupulus) and red clover (Trifolium pratense). J Agric Food Chem 53:6246–6253Google Scholar
  194. Pansara C, Chan WY, Parikh A, Trott DJ, Mehta T, Mishra R, Garg S (2019) Formulation optimization of chitosan-stabilized silver nanoparticles using in vitro antimicrobial assay. J Pharm Sci 108(2):1007–1016Google Scholar
  195. Parente E, Ciocia F, Ricciardi A, Zotta T, Felis GE, Torriani S (2010) Diversity of stress tolerance in Lactobacilus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: a multivariate screening study. Int J Food Microbiol 144(2):270–279Google Scholar
  196. Penido FCL, Piló FB, Sandes SHC, Nunes ÁC, Colen G, Oliveira ES, Rosa CA, Lacerda IC (2018) Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Braz J Microbiol 49(4):823–831Google Scholar
  197. Piló FB, Carvajal-Barriga EJ, Guamán-Burneo MC, Portero-Barahona P, Dias AMM, Freitas LFD, Gomes FCO, Rosa CA (2018) Saccharomyces cerevisiae populations and other yeasts associated with indigenous beers (chicha) of Ecuador. Braz J Microbiol 49(4):808–815Google Scholar
  198. Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, Andrejev S, Kafkia E, Typas A, Sauer U, Ralser M, Patil R (2017) Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst 5(4):345–357Google Scholar
  199. Qiu J, Ma L, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y (2017) Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading. Bioresour Technol 238:174–181Google Scholar
  200. Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J (2018) Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresour Technol 259:228–236Google Scholar
  201. Qun Y, Wei C, Liu Yu (2017) An integrated engineering system for maximizing bioenergy production from food waste. Appl Energy 206:83–89Google Scholar
  202. Raghavi S, Sindhu R, Binod P, Gnansounou E, Pandey A (2016) Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresour Technol 199:202–210Google Scholar
  203. Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 455(1–2):219–228Google Scholar
  204. Raschmanova H, Weninger A, Glieder A, Kovar K, Vogl T (2018) Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: current state and future prospects. Biotechnol Adv 36:641–665Google Scholar
  205. Rasmussen ML, Koziel JA, Jane J, Pometto AL (2015) Reducing bacterial contamination in fuel ethanol fermentations by ozone treatment of uncooked corn mash. J Agric Food Chem 63:5239–5248Google Scholar
  206. Reis VR, Bassi APG, Cerri BC, Almeida AR, Carvalho IGB, Bastos RG, Ceccato-Antonini SR (2018) Effects of feedstock and co culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2. AMB Express 8(1):23Google Scholar
  207. Ricciardi A, Parente E, Guidone A, Ianniello RG, Zotta T, Abu Sayem SM, Varcamonti M (2012) Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus. Int J Food Microbiol 157:278–285Google Scholar
  208. Rich JO, Leathers TD, Bischoff KM, Anderson AM, Nunnally MS (2015) Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation. Bioresour Technol 196:347–354Google Scholar
  209. Rich JO, Bischoff KM, Leathers TD, Anderson AM, Liu S, Skory CD (2018) Resolving bacterial contamination of fuel ethanol fermentations with beneficial bacteria—an alternative to antibiotic treatment. Bioresour Technol 247:357–362Google Scholar
  210. Roach DR, Khatibi PA, Bischoff KM, Hughes SR, Donovan DM (2013) Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol Biofuels 6(1):20Google Scholar
  211. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56(2):174–187Google Scholar
  212. Rosillo-Calle F (2012) Food versus fuel: toward a new paradigm-the need for a holistic approach biofuels and food security. ISRN Renew Energy 2012:1–15Google Scholar
  213. Roy J, Chandra S, Maitra S (2019) Nanotechnology in castable refractory. Ceram Int 45(1):19–29Google Scholar
  214. Rückle L, Senn T (2006) Hop acids as natural antibacterials can efficiently replace antibiotics in ethanol production. Int Sugar J 108(1287):139–147Google Scholar
  215. Salaberria AM, Fernandes SC, Diaz RH, Labidi J (2014) Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger. Carbohydr Polym 116:286–291Google Scholar
  216. Santos EL, Rostro-Alanís M, Parra-Saldívar R, Alvarez AJ (2018) A novel method for bioethanol production using immobilized yeast cell in calcium-alginate films and hybrid composite pervaporation membrane. Bioresour Technol 247:165–173Google Scholar
  217. Schifferdecker AJ, Dashko S, Ishchuk OP, Piškur J (2014) The wine and beer yeast Dekkera bruxellensis. Yeast 31(9):323–332Google Scholar
  218. Schmalreck AF, Teuber M (1975) Structural features determining the antibiotic potencies of natural and synthetic hop bitter resins, their precursors and derivatives. Canadian J Microbiol 21(2):205–212Google Scholar
  219. Schneider T, Baldauf A, Ba LA, Jamier V, Khairan K, Sarakbi MB, Reum N, Schneider M, Röseler A, Becker K, Burkholz T, Winyard PG, Kelkel M, Diederich M, Jacob C (2011) Selective antimicrobial activity associated with sulfur nanoparticles. J Biomed Nanotechnol 7(3):395–405Google Scholar
  220. Schoeman H, Vivier MA, Du Toit M, Dicks LM, Pretorius IS (1999) The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae. Yeast 15(8):647–656Google Scholar
  221. Sekoai PT (2016) Modelling and optimization of operational setpoint parameters for maximum fermentative biohydrogen production using box-behnken design. Fermentation 2(3):1–15Google Scholar
  222. Sekoai PT, Daramola MO (2017) The potential of dark fermentative bio-hydrogen production from biowaste effluents in South Africa. Int J Ren Energy Res 7(1):359–378Google Scholar
  223. Sekoai PT, Kana EBG (2013) Fermentative biohydrogen modelling and optimization research in light of miniaturized parallel bioreactors. Biotechnol Biotechnol Equip 27(4):3901–3908Google Scholar
  224. Sekoai PT, Yoro KO (2016) Biofuel development initiatives in sub-Saharan Africa: opportunities and challenges. Climate 4:2Google Scholar
  225. Sekoai PT, Ouma CNM, du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimire A (2019) Application of nanoparticles in biofuels: an overview. Fuel 237:380–397Google Scholar
  226. Shabunin AS, Yudin VE, Dobrovolskaya IP, Zinovyev EV, Zubov V, Ivan’kova EM, Morganti P (2019) Composite wound dressing based on chitin/chitosan nanofibers: processing and biomedical applications. Cosmetics 6:16Google Scholar
  227. Shanavas S, Padmaja G, Moorthy SN, Sajeev MS, Sheriff JT (2011) Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenergy 35(2):901–909Google Scholar
  228. Shankar S, Rhim JW (2018) Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll 28:116–123Google Scholar
  229. Shaw AJ, Lam FH, Hamilton M, Consiglio A, MacEwen K, Brevnova EE, Greenhagen E, LaTouf WG, South CR, van Dijken H, Stephanopoulos G (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353:583–586Google Scholar
  230. Shen C, Geornaras I, Kendall PA, Sofos JN (2009) Control of Listeria monocytogenes on frankfurters by dipping in hops beta acids solutions. J Food Prot 72:702–706Google Scholar
  231. Shepherd R, Reader S, Falshaw A (1997) Chitosan functional properties. Glycoconj J 14(4):535–542Google Scholar
  232. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58Google Scholar
  233. Si T, Chao R, Yuhao M, Wu Y, Ren W, Zhao H (2017) Automated multiplex genome-scale engineering in yeast. Nat Commun 8:15187Google Scholar
  234. Silva JB, Sauvageau D (2014) Bacteriophages as antimicrobial agents against bacterial contaminants in yeast fermentation processes. Biotechnol Biofuels 7:1–11Google Scholar
  235. Silva JB, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363(4):fnw002Google Scholar
  236. Siragusa GR, Haas GJ, Matthews PD, Smith RJ, Buhr RJ, Dale NM, Wise MG (2008) Antimicrobial activity of lupulone against Clostridium perfringens in the chicken intestinal tract jejunum and caecum. J Antimicrob Chemother 61:853–858Google Scholar
  237. Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31(9):401–408Google Scholar
  238. Smidsrod O (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78Google Scholar
  239. Stewart GG (2018) Yeast flocculation—sedimentation and flotation. Fermentation 4:28Google Scholar
  240. Stolarzewicz I, Białecka-Florjañczyk E, Majewska E, Krzyczkowska J (2011) Immobilization of yeast on polymeric supports. Chem Biochem Eng Q 25(1):135–144Google Scholar
  241. Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Ann Rev Biochem 46:723–763Google Scholar
  242. Strandskov FB, Bockelmann JB (1953) Antibiotics as inhibitors of microbiological contamination in beer. J Agric Food Chem 1(20):1219–1223Google Scholar
  243. Swinnen S, Henriques SF, Shrestha R, Ho P-W, Sá-Correia I, Nevoigt E (2017) Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb Cell Fact 16:7Google Scholar
  244. Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78:8161–8163Google Scholar
  245. Tang YQ, An MZ, Zhong YL, Shigeru M, Wu XL, Kida K (2010) Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. J Biosci Bioeng 109(1):41–46Google Scholar
  246. Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Ann Rev Microbiol 33:113–137Google Scholar
  247. Tyagi S, Rawtani D, Khatri N, Tharmavaram M (2018) Strategies for nitrate removal from aqueous environment using nanotechnology: a review. J Water Proc Eng 21:84–95Google Scholar
  248. Valera MJ, Morcillo-Parra MA, Zagórska I, Mas A, Beltran G, Torija MJ (2019) Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions. Int J Food Microbiol 289:174–181Google Scholar
  249. Van Cleemput M, Cattoor K, De Bosscher K, Haegeman G, De Keukeleire D, Heyerick A (2009) Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J Nat Prod 72:1220–1230Google Scholar
  250. Walker GM, Stewart GG (2016) Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2:30Google Scholar
  251. Wang D, Wang Z, Liu N, He X, Zhang B (2008) Genetic modification of industrial yeast strains to obtain controllable NewFlo flocculation property and lower diacetyl production. Biotechnol Lett 30:2013–2018Google Scholar
  252. Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed 6:765–774Google Scholar
  253. Waqas M, Naser N, Sarathy M, Morganti K, Al-Qurashi K, Bengt J (2016) Blending octane number of ethanol in HCCI, SI and CI combustion modes. SAE Int J Fuels Lubr 9(3):659–682Google Scholar
  254. Westman JO, Wang R, Novy V, Franzén CJ (2017) Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw. Biotechnol Biofuels 10:1–16Google Scholar
  255. Xiao B, Wan Y, Zhao M, Liu Y, Zhang S (2011) Preparation and characterization of antimicrobial chitosan-N-arginine with different degrees of substitution. Carbohydr Polym 83(1):144–150Google Scholar
  256. Yaguchi A, Spagnuolo M, Blenner M (2018) Engineering yeast for utilization of alternative feedstocks. Curr Opin Biotechnol 53:122–129Google Scholar
  257. Yoro KO, Sekoai PT, Isafiade AJ, Daramola MO (2019) A review on heat and mass integration techniques for energy and material minimization during CO2 capture. In Press, Int J Energy Environ Eng.  https://doi.org/10.1007/s40095-019-0304-1 CrossRefGoogle Scholar
  258. Yuan Z, Wen Y, Li G (2018) Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Bioresour Technol 259:228–236Google Scholar
  259. Zanoli P, Zavatti M (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharm 116(3):383–396Google Scholar
  260. Zarayneh S, Sepahi AA, Jonoobi M, Rasouli H (2018) Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes. Int J Biol Macromol 118(Pt A):1045–1054Google Scholar
  261. Zavascki AP, Goldani LZ, Li J, Nation RL (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60(6):1206–1215Google Scholar
  262. Zhang Y, Wang J, Wang Z, Zhang Y, Shi S, Nielsen J, Liu Z (2019) A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun 10:1053Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Engineering, HySA Infrastructure Centre of CompetenceNorth-West UniversityPotchefstroomSouth Africa
  2. 2.Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical SchoolUniversity of KwaZulu-NatalDurbanSouth Africa
  3. 3.Unit for Environmental Sciences and ManagementNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations