Advertisement

Reviews in Environmental Science and Bio/Technology

, Volume 18, Issue 3, pp 579–595 | Cite as

Recent advances in microbial production of malic acid from renewable byproducts

  • J. Iyyappan
  • G. BaskarEmail author
  • Edgard Gnansounou
  • Ashok Pandey
  • Jeganathan Kenthorai Raaman
  • B. Bharathiraja
  • R. Praveenkumar
Review Paper
  • 22 Downloads

Abstract

In the last few years, ecofriendly malic acid production has received a potential platform for the bio-based chemicals to replace the dependency of fossil based resources. The main goal of this paper is to explore the feasibility of efficient production of malic acid from cost effective alternative renewable byproducts as feedstock. To replace the traditional method of malic acid production from petroleum-based compounds such as maleic acid, the efficiency of fermentation technology for malic acid production using various microorganisms has been improved. To date, glucose is designated as the best substrate for malic acid production. However, few reviews concerning about malic acid production by employing various microbial strains were reported. The current knowledge on the biosynthesis of malic acid has assisted to improve malic acid production using various microbial strains. But, there is still need for the continuous production and replacement of low-cost substrates to increase the yield of malic acid. This review provides an overview about progress, achievements, merits, challenges and future perspectives in malic acid production from cost effective alternative substrates. Thus, malic acid production can be economical using renewable byproducts like crude glycerol by employing appropriate microorganism.

Keywords

Malic acid Techno-economic analysis Renewable waste Low-cost substrate Aspergillus species 

Notes

Acknowledgements

The authors thank Science and Engineering Research Board (SERB), Department of Science and Technology, India for granting financial support (No. EEQ/2017/000200) for this work.

References

  1. Adeoye AO, Lateef A, Gueguim-Kana EB (2015) Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal Agric Biotechnol 4:568–574CrossRefGoogle Scholar
  2. Ahn JH, Sang BI, Um Y (2011) Butanol production from thin stillage using Clostridium pasteurianum. Bioresour Technol 102:4934–4937CrossRefGoogle Scholar
  3. Apelblat A, Manzurola E (1987) Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K. J Chem Thermodyn 19(3):317–320CrossRefGoogle Scholar
  4. Baskar G, Ravi A (2015a) Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresour Technol 190:424–428CrossRefGoogle Scholar
  5. Baskar G, Ravi A (2015b) Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst. Bioresour Technol 188:124–127CrossRefGoogle Scholar
  6. Baskar G, Soumiya S (2016) Production of biodiesel from castor oil using iron(II) doped zinc oxide nanocatalyst. Renew Energy 98:101–107CrossRefGoogle Scholar
  7. Bharathiraja B, Chakravarthy M, Ranjith Kumar R, Yuvaraj D, Jayamuthunagai J, Praveen Kumar R, Palani S (2014) Biodiesel production using chemical and biological methods—a review of process, catalyst, acyl acceptor, source and process variables. Renew Sust Energy Rev 38:368–382CrossRefGoogle Scholar
  8. Bharathiraja B, Ranjith Kumar R, Praveenkumar R, Chakravarthy M, Yogendran D, Jayamuthunagai J (2016) Biodiesel production from different algal oil using immobilized pure lipase and tailor made rPichia pastoris with Cal A and Cal B genes. Bioresour Technol 213:69–78CrossRefGoogle Scholar
  9. Blank LM, Weierckr N, Zambanini T, Sarikaya E, Buescher J, Meurer M (2018) Process for the production of malate. US20180265903A1Google Scholar
  10. Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid. Appl Microbiol Biot 97(20):8903–8912CrossRefGoogle Scholar
  11. Carlsen M, Spohr AB, Nielsen J, Villadsen J (1996) Morphology and physiology of an amylase producing strain of Aspergillus oryzae during batch cultivations. Biotechnol Bioeng 49:266–276CrossRefGoogle Scholar
  12. Chen XL, Wang YC, Dong XX, Hu GP, Liu LM (2017a) Engineering rTCA pathway and C4-dicarboxylate transporter for l-malic acid production. Appl Microbiol Biot 101:4041–4052CrossRefGoogle Scholar
  13. Chen J, Yan S, Zhang X, Tyagi RD, Surampalli RY, Valéro JR (2017b) Chemical and biological conversion of crude glycerol derived from waste cooking oil to biodiesel. Waste Manag 71:164–175CrossRefGoogle Scholar
  14. Chen Z, Liu G, Zhang J, Bao J (2019) A preliminary study on l-lysine fermentation from lignocellulose feedstock and techno-economic evaluation. Bioresour Technol 271:196–201CrossRefGoogle Scholar
  15. Cheng C, Zhou Y, Lin M, Wei P, Yang ST (2017) Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: fermentation kinetics and economic analysis. Bioresour Technol 223:166–174CrossRefGoogle Scholar
  16. Chi Z, Wang ZP, Wang GY, Khan I, Chi ZM (2016) Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol 36:99–107CrossRefGoogle Scholar
  17. Chia SR, Ong HC, Chew KW, Show PL, Phang S-M, Ling TC, Nagarajan D, Lee DJ, Chang JS (2018) Sustainable approaches for algae utilisation in bioenergy production. Renew Energy 129:838–852CrossRefGoogle Scholar
  18. Chibata I, Tosa T, Takata I (1983) Continuous production of l-malic acid by immobilized cells. Trends Biotechnol 1:9–11CrossRefGoogle Scholar
  19. Crist E, Mora C, Engelman R (2017) The interaction of human population, food production, and biodiversity protection. Science 356:260–264CrossRefGoogle Scholar
  20. Dai Z, Zhou H, Zhang S, Gu H, Yang Q, Zhang W, Dong W, Ma J, Fang Y, Jiang M, Xin F (2018) Current advance in biological production of malic acid using wild type and metabolic engineered strains. Bioresour Technol 258:345–353CrossRefGoogle Scholar
  21. Deng Y, Li S, Xu Q, Gao M, Huang H (2012) Production of fumaric acid by simultaneous saccharification and fermentation of starchy materials with 2-deoxyglucose-resistant mutant strains of Rhizopus oryzae. Bioresour Technol 107:363–367CrossRefGoogle Scholar
  22. Deng Y, Mao Y, Zhang XJ (2016) Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass. Biotechnol Progr 32:14–20CrossRefGoogle Scholar
  23. Dikshit PK, Moholkar VS (2016) Kinetic analysis of dihydroxyacetone production from crude glycerol by immobilized cells of Gluconobacter oxydans MTCC 904. Bioresour Technol 216:948–957CrossRefGoogle Scholar
  24. Ding Q, Luo Q, Zhou J, Chen X, Liu L (2018) Enhancing l-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization. Appl Microbiol Biotechnol 102:8739–8751CrossRefGoogle Scholar
  25. Dong XX, Chen XL, Qian YY, Wang YC, Wang L, Qiao WH, Liu LM (2017) Metabolic engineering of Escherichia coli W3110 to produce l-malate. Biotechnol Bioeng 114:656–664CrossRefGoogle Scholar
  26. Gadagi RS, Shin WS, Sa TM (2007) Malic acid mediated aluminum phosphate solubilization by Penicillium oxalicum CBPS-3F-Tsa isolated from Korean paddy rhizosphere soil. Dev Plant Soil Sci 102:285–290Google Scholar
  27. Gharib G, Rashid N, Bashir Q, Gardner QTAA, Akhtar M, Imanaka T (2016) An extremely thermostable malate dehydrogenase from hyperthermophilic archaeon Pyrobaculum calidifontis. Extremophiles 20:57–67CrossRefGoogle Scholar
  28. Giorno L, Drioli E, Carvoli G, Cassano A, Donato L (2001) Study of an enzyme membrane reactor with immobilized fumarase for production of l-malic acid. Biotechnol Bioeng 72(1):77–84CrossRefGoogle Scholar
  29. Goldberg I, Rokem JS, Pines O (2006) Organic acids: old metabolites, new themes. J Chem Technol Biotechnol 81:1601–1611CrossRefGoogle Scholar
  30. Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749CrossRefGoogle Scholar
  31. Hou WL, Bao J (2018) Simultaneous saccharification and aerobic fermentation of high titer cellulosic citric acid by filamentous fungus Aspergillus niger. Bioresour Technol 253:72–78CrossRefGoogle Scholar
  32. Iyyappan J, Bharathiraja B, Baskar G, Jayamuthunagai J, Barathkumar S, Anna Shiny R (2018a) Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol. Bioresour Technol 251:264–267CrossRefGoogle Scholar
  33. Iyyappan J, Baskar G, Bharathiraja B, Saravanathamizhan R (2018b) Malic acid production from biodiesel derived crude glycerol using morphologically controlled Aspergillus niger in batch fermentation. Bioresour Technol 269:393–399CrossRefGoogle Scholar
  34. Iyyappan J, Bharathiraja B, Baskar G, Kamalanaban E (2019) Process optimization and kinetic analysis of malic acid production from crude glycerol using Aspergillus niger. Bioresour Technol 281:18–25CrossRefGoogle Scholar
  35. Kaur M, Kumar M, Sachdeva S, Puri SK (2018) Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresour Technol 251:390–402CrossRefGoogle Scholar
  36. Khan I, Nazir K, Wang ZP, Liu GL, Chi ZM (2014) Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Appl Microbiol Biotechnol 98:1539–1546CrossRefGoogle Scholar
  37. Kim Y, Mosier NS, Hendrickson R, Ezeji T, Blaschek H, Dien B, Cotta M, Dale B, Ladisch MR (2008) Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresour Technol 99:5165–5176CrossRefGoogle Scholar
  38. Klement T, Buchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431CrossRefGoogle Scholar
  39. Knuf C, Nookaew I, Brown SH, McCulloch M, Berry A, Nielsen J (2013) Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions. Appl Environ Microbiol 79(19):6050–6058CrossRefGoogle Scholar
  40. Knuf C, Nookaew I, Remmers I, Khoomrung S, Brown S, Berry A, Nielsen J (2014) Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl Microbiol Biotechnol 98(8):3517–3527CrossRefGoogle Scholar
  41. Li XJ, Liu Y, Yang Y, Zhang H, Wang HL, Wu Y, Zhang M, Sun T, Cheng JS, Wu XF, Pan LJ, Jiang ST, Wu HW (2014) High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnol Bioprocess Eng 19:478–492CrossRefGoogle Scholar
  42. Li ZJ, Hong PH, Da YY, Li LK, Stephanopoulos G (2018) Metabolic engineering of Escherichia coli for the production of l-malate from xylose. Metab Eng 48:25–32CrossRefGoogle Scholar
  43. Liu R, Liang L, Wu M, Chen K, Jiang M, Ma J, Wei P, Ouyang P (2013) CO2 fixation for succinic acid production by engineered Escherichia coli co-expressing pyruvate carboxylase and nicotinic acid phosphor ribosyltransferase. Biochem Eng J 79:77–83CrossRefGoogle Scholar
  44. Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014) Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresour Technol 151:69–77CrossRefGoogle Scholar
  45. Liu Z, Guan D, Wei W, Davis SJ, Ciais P, Bai J, He K (2015) Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524:335–338CrossRefGoogle Scholar
  46. Liu J, Li J, Shin HD, Du G, Chen J, Liu L (2017a) Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch. J Biotechnol 262:40–46CrossRefGoogle Scholar
  47. Liu J, Xie ZP, Shin HD, Li JH, Du GC, Chen J, Liu L (2017b) Rewiring the reductive tricarboxylic acid pathway and l-malate transport pathway of Aspergillus oryzae for overproduction of l-malate. J Biotechnol 253:1–9CrossRefGoogle Scholar
  48. Lopes DC, Neto AJS, Mendes AA, Pereira DTV (2013) Economic feasibility of biodiesel production from Macauba in Brazil. Energy Econ 40:819–824CrossRefGoogle Scholar
  49. Luo H, Yang R, Zhao Y, Wang Z, Liu Z, Huang M, Zeng Q (2018) Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. Bioresour Technol 253:343–354CrossRefGoogle Scholar
  50. Manochio C, Andrade BR, Rodriguez RP, Moraes BS (2017) Ethanol from biomass: a comparative overview. Renew Sustain Energy Rev 80:743–755CrossRefGoogle Scholar
  51. Mondala AH (2015) Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric and malic acids: current and future prospects. J Ind Microbiol Biotechnol 42:487–506CrossRefGoogle Scholar
  52. Monteiro MR, Kugelmeier CL, Pinheiro RS, Batalha MO, da Silva César A (2018) Glycerol from biodiesel production: technological paths for sustainability. Renew Sustain Energy Rev 88:109–122CrossRefGoogle Scholar
  53. Mu L, Wen JP (2013) Engineered Bacillus subtilis 168 produces l-malate by heterologous biosynthesis pathway construction and lactate dehydrogenase deletion. World J Microbiol Biot 29(1):33–41CrossRefGoogle Scholar
  54. Naude A, Nicol W (2018) Malic acid production through the whole-cell hydration of fumaric acid with immobilised Rhizopus oryzae. Biochem Eng J 137:152–161CrossRefGoogle Scholar
  55. Negoro H, Sakamoto M, Kotaka A, Matsumura K, Hata Y (2018) Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae. J Biosci Bioeng 125(2):211–217CrossRefGoogle Scholar
  56. Ochsenreither K, Fischer C, Neumann A, Syldatk C (2014) Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863. Appl Microbiol Biotechnol 98:5449–5460CrossRefGoogle Scholar
  57. Oh Y-K, Hwang KR, Kim C, Kim JR, Lee JS (2018) Recent developments and key barriers to advanced biofuels: a short review. Bioresour Technol 257:320–333CrossRefGoogle Scholar
  58. Oswald F, Dorsam S, Veith N, Zwick M, Neumann A, Ochsenreither K, Syldatk C (2016) Sequential mixed cultures: from syngas to malic acid. Front Microbiol 7:891Google Scholar
  59. Peleg Y, Stieglitz B, Goldberg I (1988) Malic acid accumulation by Aspergillus flavus. I. Biochemical aspects of acid biosynthesis. Appl Microbiol Biotechnol 28:69–75CrossRefGoogle Scholar
  60. Phillips JR, Atiyeh HK, Tanner RS, Torres JR, Saxena J, Wilkins MR, Huhnke RL (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour Technol 190:114–121CrossRefGoogle Scholar
  61. Sauer U, Eikmanns BJ (2005) The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29(4):765–794CrossRefGoogle Scholar
  62. Shigeo A, Akira F, Ichiro TK (1962) Method of producing l-malic acid by fermentation. US Patent 3,063,910Google Scholar
  63. Smith CV, Huang CC, Miczak A, Russell DG, Sacchettini JC, Honer zu Bentrup K (2003) Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem 278:1735–1743CrossRefGoogle Scholar
  64. Somasundaram S, Eom GT, Hong SH (2018) Efficient malic acid production in Escherichia coli using a synthetic scaffold protein complex. Appl Biochem Biotechnol 184(4):1308–1318CrossRefGoogle Scholar
  65. Trichez D, Auriol C, Baylac A, Irague R, Dressaire C, Carnicer-Heras M, Heux S, François JM, Walther T (2018) Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid. Microb Cell Fact 17:1–12CrossRefGoogle Scholar
  66. Vakilchap F, Mousavi SM, Shojaosadati SA (2016) Role of Aspergillus niger in recovery enhancement of valuable metal from produced red mud in Bayer process. Bioresour Technol 218:991–998CrossRefGoogle Scholar
  67. Veiter L, Rajamanickam V, Herwig C (2018) The filamentous fungal pellet-relationship between morphology and productivity. Appl Microbiol Biotechnol 102:2997–3006CrossRefGoogle Scholar
  68. Vivek N, Sindhu R, Madhavan A, Anju AJ, Castro E, Faraco V, Pandey A, Binod P (2017) Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate—metabolic aspects, challenges and possibilities: an overview. Bioresour Technol 239:507–517CrossRefGoogle Scholar
  69. Wainaina S, Horváth IS, Taherzadeh MJ (2017) Biochemicals from food waste and recalcitrant biomass via syngas fermentation: a review. Bioresour Technol 248:113–121CrossRefGoogle Scholar
  70. Wang ZP, Wang GY, Khan I, Chi ZM (2013) High-level production of calcium malate from glucose by Penicillium sclerotiorum K302. Bioresour Technol 143:674–677CrossRefGoogle Scholar
  71. Wang J, Lin M, Xu M, Yang ST (2016) Anaerobic fermentation for production of carboxylic acids as bulk chemicals from renewable biomass. Anaerob Biotechnol 156:323–361Google Scholar
  72. Wei PL, Cheng C, Lin M, Zhou YP, Yang ST (2017) Production of poly (malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: kinetics and process economics. Bioresour Technol 224:581–589CrossRefGoogle Scholar
  73. Werpy T, Petersen G (2004) Top value added chemicals from biomass. Vol. 1. Results of screening for potential candidates from sugars and synthesis gas. US Department of Energy (USDOE)Google Scholar
  74. West TP (2011) Malic acid production from thin stillage by Aspergillus species. Biotechnol Lett 33(12):2463–2467CrossRefGoogle Scholar
  75. West TP (2015) Fungal biotransformation of crude glycerol into malic acid. Z Naturforsch 70(5–6C):165–167CrossRefGoogle Scholar
  76. Yamamoto L, Tosa T, Yamashita K, Chibata I (1976) Continuous production of l-malic acid by imobilized Brevibacterium ammoniagenes cells. Eur J Appl Microbiol 3:169–183CrossRefGoogle Scholar
  77. Yin X, Li JH, Shin HD, Du GC, Liu L, Chen J (2015) Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnol Adv 33(6):830–841CrossRefGoogle Scholar
  78. Yuan Y, Leng Y, Shao H, Huang C, Shan K (2014) Solubility of dl-malic acid in water, ethanol and in mixtures of ethanol + water. Fluid Phase Equilib 377:27–32CrossRefGoogle Scholar
  79. Zambanini T, Sarikaya E, Kleineberg W, Buescher JM, Meurer G, Wierckx N, Blank LM (2016) Efficient malic acid production from glycerol with Ustilago trichophora TZ1. Biotechnol Biofuels 9:67CrossRefGoogle Scholar
  80. Zambanini T, Tehrani HH, Geiser E, Sonntag KC, Buescher MJ, Meurer G, Wierckx N, Blank ML (2017) Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid Production. Metab Eng Commun 4:12–21CrossRefGoogle Scholar
  81. Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JMA, van Dijken JP, Pronk JT, van Maris AJA (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74(9):2766–2777CrossRefGoogle Scholar
  82. Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) l-Malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 77:427–434CrossRefGoogle Scholar
  83. Zhang T, Ge CY, Deng L, Tan TW, Wang F (2015) C4-dicarboxylic acid production by overexpressing the reductive TCA pathway. FEMS Microbiol Lett 362(9):fnv052.  https://doi.org/10.1093/femsle/fnv052 CrossRefGoogle Scholar
  84. Zou X, Zhou Y, Yang ST (2013) Production of polymalic and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng 110:2105–2113CrossRefGoogle Scholar
  85. Zou X, Yang J, Tian X, Guo M, Li Z, Li Y (2016) Production of polymalic acid and malic acid from xylose and corncob hydrolysate by a novel Aureobasidium pullulans YJ 6–11 strain. Process Biochem 51:16–23CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering CollegeChennaiIndia
  2. 2.Department of BiotechnologySt. Joseph’s College of EngineeringChennaiIndia
  3. 3.Bioenergy and Energy Planning Research GroupEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  4. 4.CSIR-Indian Institute of Toxicology ResearchLucknowIndia
  5. 5.Department of BiotechnologyArunai Engineering CollegeThiruvannaamalaiIndia

Personalised recommendations