Advertisement

Keratin based thermoplastic biocomposites: a review

  • Amin ShavandiEmail author
  • M. Azam Ali
review paper
  • 42 Downloads

Abstract

Fibre reinforced composites have become important materials for manufacturing a diverse range of industrial products. Keratin-rich materials including sheep wool and poultry feathers can have added value by partially substituting synthetic polymers in the production of biocomposites with improved mechanical properties. The strong intermolecular disulfides, hydrogen, ionic and hydrophobic interactions of keratin make it behave as a thermoset material which is not easy to process and thermally blend with other polymers. Therefore, different plasticizers, compatibilizers and coupling agents were investigated in order to make keratin a processable material. This review discusses recent developments in the production of thermoplastic keratin blend biocomposites. In particular, the processing and preparation conditions has been discussed, and their strengths and limitations are enumerated and critically evaluated.

Graphical abstract

Keywords

Melt extrusion Thermoplastic Biocomposite Wool Feather 

Notes

Acknowledgements

This work was supported by the Lincoln AgriTech Ltd. and Wool Industry Research Ltd. (WIRL), Christchurch, New Zealand, Grant Number: PR17518. The sheep wool and feather in the graphical abstract are created by Freepik.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11157_2019_9497_MOESM1_ESM.docx (58 kb)
Supplementary material 1 (DOCX 51 kb)

References

  1. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639.  https://doi.org/10.1016/j.compscitech.2006.07.003 CrossRefGoogle Scholar
  2. Aluigi A, Zoccola M, Vineis C, Tonin C, Ferrero F, Canetti M (2007) Study on the structure and properties of wool keratin regenerated from formic acid. Int J Biol Macromol 41:266–273.  https://doi.org/10.1016/j.ijbiomac.2007.03.002 CrossRefGoogle Scholar
  3. Aluigi A, Vineis C, Ceria A, Tonin C (2008a) Composite biomaterials from fibre wastes: characterization of wool–cellulose acetate blends. Compos Part A Appl Sci Manuf 39:126–132.  https://doi.org/10.1016/j.compositesa.2007.08.022 CrossRefGoogle Scholar
  4. Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C (2008b) Structure and properties of keratin/PEO blend nanofibres. Eur Polym J 44:2465–2475.  https://doi.org/10.1016/j.eurpolymj.2008.06.004 CrossRefGoogle Scholar
  5. Aluigi A, Tonetti C, Vineis C, Tonin C, Mazzuchetti G (2011) Adsorption of copper(II) ions by keratin/PA6 blend nanofibres. Eur Polym J 47:1756–1764.  https://doi.org/10.1016/j.eurpolymj.2011.06.009 CrossRefGoogle Scholar
  6. Amieva EJ-C, Velasco-Santos C, Martínez-Hernández A, Rivera-Armenta J, Mendoza-Martínez A, Castaño V (2014) Composites from chicken feathers quill and recycled polypropylene. J Compos Mater.  https://doi.org/10.1177/0021998313518359 Google Scholar
  7. Avérous L, Fringant C (2001) Association between plasticized starch and polyesters: processing and performances of injected biodegradable systems. Polym Eng Sci 41:727–734.  https://doi.org/10.1002/pen.10768 CrossRefGoogle Scholar
  8. Baek DH, Ki CS, Um IC, Park YH (2007) Metal ion adsorbability of electrospun wool keratose/silk fibroin blend nanofiber mats. Fiber Polym 8:271–277.  https://doi.org/10.1007/BF02877269 CrossRefGoogle Scholar
  9. Barone JR (2005) Polyethylene/keratin fiber composites with varying polyethylene crystallinity. Compos Part A Appl Sci Manuf 36:1518–1524.  https://doi.org/10.1016/j.compositesa.2005.03.006 CrossRefGoogle Scholar
  10. Barone JR (2009) Lignocellulosic fiber-reinforced keratin polymer composites. J Polym Environ 17:143–151.  https://doi.org/10.1007/s10924-009-0131-1 CrossRefGoogle Scholar
  11. Barone JR, Gregoire NT (2006) Characterisation of fibre–polymer interactions and transcrystallinity in short keratin fibre–polypropylene composites. Plast Rubber Compos 35:287–293.  https://doi.org/10.1179/174328906X146478 CrossRefGoogle Scholar
  12. Barone JR, Schmidt WF (2005) Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos Sci Technol 65:173–181.  https://doi.org/10.1016/j.compscitech.2004.06.011 CrossRefGoogle Scholar
  13. Barone JR, Schmidt WF, Liebner CFE (2005) Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Compos Sci Technol 65:683–692.  https://doi.org/10.1016/j.compscitech.2004.09.030 CrossRefGoogle Scholar
  14. Barone JR, Schmidt WF, Gregoire NT (2006) Extrusion of feather keratin. J Appl Polym Sci 100:1432–1442.  https://doi.org/10.1002/app.23501 CrossRefGoogle Scholar
  15. Bertini F, Canetti M, Patrucco A, Zoccola M (2013) Wool keratin-polypropylene composites: properties and thermal degradation. Polym Degrad Stab 98:980–987.  https://doi.org/10.1016/j.polymdegradstab.2013.02.011 CrossRefGoogle Scholar
  16. Blackburn S, Lee GR (1956) The reaction of wool keratin with alkali. Biochem Biophys Acta 19:505–512.  https://doi.org/10.1016/0006-3002(56)90474-7 CrossRefGoogle Scholar
  17. Blicblau AS, Coutts RSP, Sims A (1997) Novel composites utilizing raw wool and polyester resin. J Mater Sci Lett 16:1417–1419.  https://doi.org/10.1023/A:1018517512425 CrossRefGoogle Scholar
  18. Bullions TA, Gillespie RA, Price-O’Brien J, Loos AC (2004) The effect of maleic anhydride modified polypropylene on the mechanical properties of feather fiber, kraft pulp, polypropylene composites. J Appl Polym Sci 92:3771–3783.  https://doi.org/10.1002/app.20369 CrossRefGoogle Scholar
  19. Bullions TA, Hoffman D, Gillespie RA, Price-O’Brien J, Loos AC (2006) Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites. Compos Sci Technol 66:102–114.  https://doi.org/10.1016/j.compscitech.2005.03.017 CrossRefGoogle Scholar
  20. Canetti M, Cacciamani A, Bertini F (2013) Structural characterization and thermal behaviour of wool keratin hydrolizates-polypropylene composites. J Polym Res 20:181.  https://doi.org/10.1007/s10965-013-0181-x CrossRefGoogle Scholar
  21. Cheng S, K-t Lau, Liu T, Zhao Y, Lam P-M, Yin Y (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos Part B Eng 40:650–654.  https://doi.org/10.1016/j.compositesb.2009.04.011 CrossRefGoogle Scholar
  22. Colom X, Carrasco F, Pagès P, Cañavate J (2003) Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Compos Sci Technol 63:161–169.  https://doi.org/10.1016/S0266-3538(02)00248-8 CrossRefGoogle Scholar
  23. Conzatti L, Giunco F, Stagnaro P, Capobianco M, Castellano M, Marsano E (2012) Polyester-based biocomposites containing wool fibres. Compos Part A Appl Sci Manuf 43:1113–1119.  https://doi.org/10.1016/j.compositesa.2012.02.019 CrossRefGoogle Scholar
  24. Conzatti L, Giunco F, Stagnaro P, Patrucco A, Marano C, Rink M, Marsano E (2013) Composites based on polypropylene and short wool fibres. Compos Part A Appl Sci Manuf 47:165–171.  https://doi.org/10.1016/j.compositesa.2013.01.002 CrossRefGoogle Scholar
  25. Conzatti L et al (2014) Wool fibres functionalised with a silane-based coupling agent for reinforced polypropylene composites. Compos Part A Appl Sci Manuf 61:51–59.  https://doi.org/10.1016/j.compositesa.2014.02.005 CrossRefGoogle Scholar
  26. Dou Y, Zhang B, He M, Yin G, Cui Y (2016) The structure, tensile properties and water resistance of hydrolyzed feather keratin-based bioplastics. Chin J Chem Eng 24:415–420.  https://doi.org/10.1016/j.cjche.2015.11.007 CrossRefGoogle Scholar
  27. Ghosh A, Carran RS, Grosvenor AJ, Deb-Choudhury S, Haines SR, Dyer JM (2016) Feather meal-based thermoplastics: Methyl vinyl ether/maleic anhydride copolymer improves material properties. Fiber Polym 17(1): 9–14.  https://doi.org/10.1007/s12221-016-5291-8 CrossRefGoogle Scholar
  28. Ghosh A, Ali A, Collie SR (2017) Effect of wool keratin on mechanical and morphological characteristics of polycaprolactone suture fibre. JTE 63:1–4.  https://doi.org/10.4188/jte.63.1 Google Scholar
  29. Gokce O, Kasap M, Akpinar G, Ozkoc G (2017) Preparation, characterization, and in vitro evaluation of chicken feather fiber–thermoplastic polyurethane composites. J Appl Polym Sci 134:45338.  https://doi.org/10.1002/app.45338 CrossRefGoogle Scholar
  30. Grkovic M, Stojanovic DB, Kojovic A, Strnad S, Kreze T, Aleksic R, Uskokovic PS (2015) Keratin-polyethylene oxide bio-nanocomposites reinforced with ultrasonically functionalized graphene. RSC Adv 5:91280–91287.  https://doi.org/10.1039/C5RA12402F CrossRefGoogle Scholar
  31. Gupta P, Nayak KK (2015) Compatibility study of alginate/keratin blend for biopolymer development. J Appl Biomater Func 13:e332–e339.  https://doi.org/10.5301/jabfm.5000242 Google Scholar
  32. Hong CK, Wool RP (2005) Development of a bio-based composite material from soybean oil and keratin fibers. J Appl Polym Sci 95:1524–1538.  https://doi.org/10.1002/app.21044 CrossRefGoogle Scholar
  33. Huda S, Yang Y (2008) Composites from ground chicken quill and polypropylene. Compos Sci Technol 68:790–798.  https://doi.org/10.1016/j.compscitech.2007.08.015 CrossRefGoogle Scholar
  34. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interfaces 15:169–191.  https://doi.org/10.1163/156855408783810920 CrossRefGoogle Scholar
  35. Idris A, Vijayaraghavan R, Rana UA, Fredericks D, Patti AF, MacFarlane DR (2013) Dissolution of feather keratin in ionic liquids. Green Chem 15:525–534.  https://doi.org/10.1039/C2GC36556A CrossRefGoogle Scholar
  36. Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Part A Appl Sci Manuf 34:253–266.  https://doi.org/10.1016/S1359-835X(02)00185-9 CrossRefGoogle Scholar
  37. Kakkar P, Madhan B, Shanmugam G (2014) Extraction and characterization of keratin from bovine hoof: a potential material for biomedical applications. SpringerPlus 3:596CrossRefGoogle Scholar
  38. Katoh K, Shibayama M, Tanabe T, Yamauchi K (2004) Preparation and physicochemical properties of compression-molded keratin films. Biomaterials 25:2265–2272.  https://doi.org/10.1016/j.biomaterials.2003.09.021 CrossRefGoogle Scholar
  39. Kim NK, Bhattacharyya D (2016) Development of fire resistant wool polymer composites: mechanical performance and fire simulation with design perspectives. Mater Des 106:391–403.  https://doi.org/10.1016/j.matdes.2016.06.005 CrossRefGoogle Scholar
  40. Kim NK, Lin RJT, Bhattacharyya D (2014) Extruded short wool fibre composites: mechanical and fire retardant properties. Compos Part B Eng 67:472–480.  https://doi.org/10.1016/j.compositesb.2014.08.002 CrossRefGoogle Scholar
  41. Kim NK, Lin RJT, Bhattacharyya D (2015) Effects of wool fibres, ammonium polyphosphate and polymer viscosity on the flammability and mechanical performance of PP/wool composites. Polym Degrad Stab 119:167–177.  https://doi.org/10.1016/j.polymdegradstab.2015.05.015 CrossRefGoogle Scholar
  42. Lai SM, Huang CK, Shen HF (2005) Preparation and properties of biodegradable poly(butylene succinate)/starch blends. J Appl Polym Sci 97:257–264.  https://doi.org/10.1002/app.21679 CrossRefGoogle Scholar
  43. Li J, Li Y, Li L, Mak AFT, Ko F, Qin L (2009) Preparation and biodegradation of electrospun PLLA/keratin nonwoven fibrous membrane. Polym Degrad Stab 94:1800–1807.  https://doi.org/10.1016/j.polymdegradstab.2009.06.004 CrossRefGoogle Scholar
  44. Liebeck B, Hidalgo N, Roth G, Popescu C, Böker A (2017) Synthesis and characterization of methyl cellulose/keratin hydrolysate composite membranes. Polymers 9:91CrossRefGoogle Scholar
  45. Lin H, Yan H, Liu B, Wei L, Xu B (2011) The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites. Polym Degrad Stab 96:1382–1388.  https://doi.org/10.1016/j.polymdegradstab.2011.03.016 CrossRefGoogle Scholar
  46. Liu X, Xu W, Peng X (2009) Effects of stearic acid on the interface and performance of polypropylene/superfine down powder composites. Polym Compos 30:1854–1863.  https://doi.org/10.1002/pc.20759 CrossRefGoogle Scholar
  47. Liu X, Chen F, Yang H, Xu W (2013) Feasibility and properties of polypropylene composites reinforced with down feather whisker. J Thermoplast Compos Mater 28:19–31.  https://doi.org/10.1177/0892705712475014 CrossRefGoogle Scholar
  48. Martínez-Hernández AL, Velasco-Santos C, de-Icaza M, Castaño VM (2007) Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Compos Part B Eng 38:405–410.  https://doi.org/10.1016/j.compositesb.2006.06.013 CrossRefGoogle Scholar
  49. Metın D, Tihminlioğlu F, Balköse D, Ülkü S (2004) The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos Part A Appl Sci Manuf 35:23–32.  https://doi.org/10.1016/j.compositesa.2003.09.021 CrossRefGoogle Scholar
  50. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26.  https://doi.org/10.1023/A:1021013921916 CrossRefGoogle Scholar
  51. Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Effect of MAPP as a coupling agent on the performance of jute–PP composites. J Reinf Plast Compos 23:625–637.  https://doi.org/10.1177/0731684404032868 CrossRefGoogle Scholar
  52. Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6:22–29.  https://doi.org/10.1016/S1369-7021(03)00427-9 CrossRefGoogle Scholar
  53. Pardo-Ibáñez P, Lopez-Rubio A, Martínez-Sanz M, Cabedo L, Lagaron JM (2014) Keratin–polyhydroxyalkanoate melt-compounded composites with improved barrier properties of interest in food packaging applications. J Appl Polym Sci.  https://doi.org/10.1002/app.39947 Google Scholar
  54. Poole AJ, Church JS, Huson MG (2009) Environmentally sustainable fibers from regenerated protein. Biomacromol 10:1–8.  https://doi.org/10.1021/bm8010648 CrossRefGoogle Scholar
  55. Poole A, Lyons R, Church J (2011) Dissolving feather keratin using sodium sulfide for bio-polymer applications. J Polym Environ 19:995–1004.  https://doi.org/10.1007/s10924-011-0365-6 CrossRefGoogle Scholar
  56. Pourjavaheri F, Jones OAH, Czajka M, Martinez-Pardo I, Blanch EW, Shanks RA (2018) Design and characterization of sustainable bio-composites from waste chicken feather keratin and thermoplastic polyurethane. Polym Compos 39:E620–E632.  https://doi.org/10.1002/pc.24794 CrossRefGoogle Scholar
  57. Rajkumar G, Srinivasan J, Suvitha L (2013) Development of novel silk/wool hybrid fibre polypropylene composites. Iran Polym J 22:277–284.  https://doi.org/10.1007/s13726-013-0128-4 CrossRefGoogle Scholar
  58. Rana AK, Mandal A, Bandyopadhyay S (2003) Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos Sci Technol 63:801–806.  https://doi.org/10.1016/S0266-3538(02)00267-1 CrossRefGoogle Scholar
  59. Reddy N, Yang Y (2010) Light-weight polypropylene composites reinforced with whole chicken feathers. J Appl Polym Sci 116:3668–3675.  https://doi.org/10.1002/app.31931 Google Scholar
  60. Reddy N, Jiang J, Yang Y (2014) Biodegradable composites containing chicken feathers as matrix and jute fibers as reinforcement. J Polym Environ 22:310–317.  https://doi.org/10.1007/s10924-014-0648-9 CrossRefGoogle Scholar
  61. Russell SJ, Institute T (2007) Handbook of Nonwovens. CRC Press, CambridgeCrossRefGoogle Scholar
  62. Sallih N, Lescher P, Bhattacharyya D (2014) Factorial study of material and process parameters on the mechanical properties of extruded kenaf fibre/polypropylene composite sheets. Compos Part A Appl Sci Manuf 61:91–107.  https://doi.org/10.1016/j.compositesa.2014.02.014 CrossRefGoogle Scholar
  63. Shavandi A, Ali MA (2019) Graft polymerization onto wool fibre for improved functionality. Prog Org Coat 130:182–199.  https://doi.org/10.1016/j.porgcoat.2019.01.054 CrossRefGoogle Scholar
  64. Shavandi A, Bekhit AE-DA, Carne A, Bekhit A (2016) Evaluation of keratin extraction from wool by chemical methods for bio-polymer application. J Bioact Compat Pol 32:163–177.  https://doi.org/10.1177/0883911516662069 CrossRefGoogle Scholar
  65. Shavandi A, Carne A, Bekhit AA, Bekhit AE-DA (2017a) An improved method for solubilisation of wool keratin using peracetic acid. JECE 5:1977–1984.  https://doi.org/10.1016/j.jece.2017.03.043 Google Scholar
  66. Shavandi A, Silva TH, Bekhit AA, Bekhit AE-DA (2017b) Keratin: dissolution, extraction and biomedical application. Biomater Sci 5:1699–1735.  https://doi.org/10.1039/C7BM00411G CrossRefGoogle Scholar
  67. Song K, Xu H, Xie K, Yang Y (2017) Keratin-based biocomposites reinforced and cross-linked with dual-functional cellulose nanocrystals. Acs Sustain Chem Eng 5:5669–5678.  https://doi.org/10.1021/acssuschemeng.7b00085 CrossRefGoogle Scholar
  68. Spiridon I, Paduraru OM, Rudowski M, Kozlowski M, Darie RN (2012) Assessment of changes due to accelerated weathering of low-density polyethylene/feather composites. Ind Eng Chem Res 51:7279–7286.  https://doi.org/10.1021/ie300738d CrossRefGoogle Scholar
  69. Supri AG, Aizat AE, Yazid MIM, Masturina M (2013) Chicken feather fibers–recycled high-density polyethylene composites: the effect of ε-caprolactam. J Thermoplast Compos Mater 28:327–339.  https://doi.org/10.1177/0892705713484746 CrossRefGoogle Scholar
  70. Torres FG, Cubillas ML (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym Test 24:694–698.  https://doi.org/10.1016/j.polymertesting.2005.05.004 CrossRefGoogle Scholar
  71. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264.  https://doi.org/10.1016/S0266-3538(03)00096-4 CrossRefGoogle Scholar
  72. Willett JL, Felker FC (2005) Tensile yield properties of starch-filled poly(ester amide) materials. Polymer 46:3035–3042.  https://doi.org/10.1016/j.polymer.2005.01.059 CrossRefGoogle Scholar
  73. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–819.  https://doi.org/10.1016/j.compositesa.2010.03.005 CrossRefGoogle Scholar
  74. Xu W, Wang X, Li W, Peng X, Liu X, Wang XG (2007) Characterization of superfine wool powder/poly(propylene) blend film. Macromol Mater Eng 292:674–680.  https://doi.org/10.1002/mame.200600491 CrossRefGoogle Scholar
  75. Zhan M, Wool RP (2010) Biobased composite resins design for electronic materials. J Appl Polym Sci 118:3274–3283.  https://doi.org/10.1002/app.32633 CrossRefGoogle Scholar
  76. Zhan M, Wool RP, Xiao JQ (2011) Electrical properties of chicken feather fiber reinforced epoxy composites. Compos Part A Appl Sci Manuf 42:229–233.  https://doi.org/10.1016/j.compositesa.2010.11.007 CrossRefGoogle Scholar
  77. Zhang Q, Liebeck BM, Yan K, Demco DE, Körner A, Popescu C (2012) Alpha-helix self-assembly of oligopeptides originated from beta-sheet keratin. Macromol Chem Phys 213:2628–2638.  https://doi.org/10.1002/macp.201200446 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Bioengineering Research Team, Centre for Bioengineering and Nanomedicine, Department of Food ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.BioMatter-Biomass transformation Lab (BTL), École interfacultaire de Bioingénieurs (EIB)Université Libre de BruxellesBrusselsBelgium

Personalised recommendations