Advertisement

Understanding biomass recalcitrance in grasses for their efficient utilization as biorefinery feedstock

  • Aurélie Bichot
  • Jean-Philippe Delgenès
  • Valérie Méchin
  • Hélène Carrère
  • Nicolas Bernet
  • Diana García-Bernet
Review Paper

Abstract

One of the main challenges for the deployment of lignocellulosic biorefineries in future years is to find renewable and secured biomass sources in order to obtain bio-sourced products, as an alternative to petroleum-based commodities. Grass biomass, considering its characteristics (availability, composition, productivity, possibility of being harvested from both arable (post-harvest residues) and non-agricultural lands), can be considered as a biomass source for the future. Nevertheless, because of its complex structure and composition, which need deconstructive pre-treatments to render possible further biological conversions, grasses utilisation in biorefinery is today not widespread. Indeed, recalcitrance to polymers degradation in grasses concerns structural and compositional characteristics and can result in costly and complicated biorefinery processes. Grass recalcitrance is due to various natural factors strongly related and difficult to dissociate: rind and vascular structures; composition (lignin content is a key factor for cellulose hydrolysis acting like a physical barrier while hemicelluloses seem to play a more significant role in woody biomass than in grass plants); physical structures (crystalline nature and insoluble surface of cellulose, specific surface area, particle size), etc. Physico-chemical pretreatments are efficient solutions to overcome recalcitrance, while phenotypic selections are interesting but not efficient enough to obtain an optimal enzymatic hydrolysis. In some cases, the structural elements of grass biomass can be negatively affected by physico-chemical pretreatments, causing pre-treatment-induced recalcitrance, like cellulose hornification (irreversible alteration of cellulose microfibers), vascular structure collapsed and reduced cellulose bioaccesibility to enzymes due to cellulose covering by lignin, following lignin solubilisation.

Keywords

Grass recalcitrance Biomass pretreatment Biorefinery 

Notes

Acknowledgements

The authors are gratefully acknowledged for the Ph.D. Grant allocated by GAIA Ph.D. school to Aurélie BICHOT.

References

  1. ADEME (2018) Economie Circulaire Agence de l’Environnement et de la Maîtrise de l’Énergie http://www.ademe.fr/expertises/economie-circulaire. Accessed 27 June 2018
  2. Agudelo RA, Garcia-Aparicio MP, Gorgens JF (2016) Steam explosion pretreatment of triticale (X Triticosecale Wittmack) straw for sugar production. N Biotech 33:153–163.  https://doi.org/10.1016/j.nbt.2015.10.001 CrossRefGoogle Scholar
  3. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861.  https://doi.org/10.1016/j.biortech.2009.11.093 CrossRefGoogle Scholar
  4. Amnuaycheewa P, Rodiahwati W, Sanvarinda P, Cheenkachorn K et al (2017) Effect of organic acid pretreatment on napier grass (Pennisetum purpureum) straw biomass conversion. Int J Appl Sci Technol 10:107–117.  https://doi.org/10.14416/j.ijast.2017.05.005 CrossRefGoogle Scholar
  5. Apprich S, Tirpanalan O, Hell J, Reisinger M et al (2014) Wheat bran-based biorefinery 2: valorization of products. LWT Food Sci Technol 56:222–231.  https://doi.org/10.1016/j.lwt.2013.12.003 CrossRefGoogle Scholar
  6. Auxenfans T, Terryn C, Paes G (2017) Seeing biomass recalcitrance through fluorescence. Sci Rep 7:8.  https://doi.org/10.1038/s41598-017-08740-1 CrossRefGoogle Scholar
  7. Bach L, Gissot L, Marion J, Tellier F, Moreau P et al (2011) Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana. J Cell Sci 124:3223–3234.  https://doi.org/10.1242/jcs.074575 CrossRefGoogle Scholar
  8. Balaman SY, Wright DG, Scott J, Matopoulos A (2018) Network design and technology management for waste to energy production: an integrated optimization framework under the principles of circular economy. Energy 143:911–933.  https://doi.org/10.1016/j.energy.2017.11.058 CrossRefGoogle Scholar
  9. Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573.  https://doi.org/10.1016/j.pecs.2007.11.001 CrossRefGoogle Scholar
  10. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848.  https://doi.org/10.1016/j.procbio.2003.09.011 CrossRefGoogle Scholar
  11. Ballesteros I, Negro MJ, Oliva JM, Cabanas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 130:496–508.  https://doi.org/10.1385/abab:130:1:496 CrossRefGoogle Scholar
  12. Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, Mudliar S (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy 33:1680–1686.  https://doi.org/10.1016/j.biombioe.2009.09.001 CrossRefGoogle Scholar
  13. Barakat A, Monlau F, Solhy A, Carrere H (2015) Mechanical dissociation and fragmentation of lignocellulosic biomass: effect of initial moisture, biochemical and structural proprieties on energy requirement. Appl Energy 142:240–246.  https://doi.org/10.1016/j.apenergy.2014.12.076 CrossRefGoogle Scholar
  14. Barrière Y (2017) Brown-midrib genes in maize and their efficiency in dairy cow feeding. Perspectives for breeding improved silage maize targeting gene modifications in the monolignol and p-hydroxycinnamate pathways. Maydica 62:19Google Scholar
  15. Barrière Y, Alber D, Dolstra O, Motto M, Ordas A, Van Waes J, Vlasminkel L, Welcker C, Monod JP et al (2005) Past and prospects of forage maize breeding in Europe. I. The grass cell wall as a basis of genetic variation and future improvements in feeding value. Maydica 50:259–274Google Scholar
  16. Barrière Y, Chavigneau H, Delaunay S, Courtial A, Bosio M, Lassagne H, Derory J, Lapierre C, Mechin V, Tatout C (2013) Different mutations in the ZmCAD2 gene underlie the maize brown-midrib1 (bm1) phenotype with similar effects on lignin characteristics and have potential interest for bioenergy production. Maydica 58:6–20Google Scholar
  17. Becklin KM, Anderson JT, Gerhart LM et al (2016) Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiol 172:635–649.  https://doi.org/10.1104/pp.16.00793 CrossRefGoogle Scholar
  18. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106.  https://doi.org/10.1016/j.rser.2014.04.047 CrossRefGoogle Scholar
  19. Benghedalia D, Miron J (1981) The effect of combined chemical and enzyme treatments on the saccharification and invitro digestion rate of wheat straw. Biotechnol Bioeng 23:823–831.  https://doi.org/10.1002/bit.260230412 CrossRefGoogle Scholar
  20. Bjerre AB, Olesen AB, Fernqvist T, Ploger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577.  https://doi.org/10.1002/(sici)1097-0290(19960305)49:5%3c568:aid-bit10%3e3.3.co;2-4 CrossRefGoogle Scholar
  21. Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, Luengnaruemitchai A, Chaisuwan T, Wongkasemjit S (2012) Release of monomeric sugars from Miscanthus sinensis by microwave-assisted ammonia and phosphoric acid treatments. Bioresour Technol 103:425–431.  https://doi.org/10.1016/j.biortech.2011.09.136 CrossRefGoogle Scholar
  22. BP (2016) Statistical review of world energy. British Pretoleum, LondonGoogle Scholar
  23. Brandon SK, Eiteman MA, Patel K, Richbourg MM, Miller DJ, Anderson WF, Peterson JD (2008) Hydrolysis of Tifton 85 bermudagrass in a pressurizea batch hot water reactor. J Chem Technol Biotechnol 83:505–512.  https://doi.org/10.1002/jctb.1824 CrossRefGoogle Scholar
  24. Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B et al (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102.  https://doi.org/10.1039/c7gc00705a CrossRefGoogle Scholar
  25. Brémond U, de Buyer R, Steyer J-P, Bernet N, Carrere H (2018) Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale. Renew Sustain Energy Rev 90:583–604CrossRefGoogle Scholar
  26. Brown RM (2004) Cellulose structure and biosynthesis: What is in store for the 21st century? J Polym Sci Part A Polym Chem 42:487–495.  https://doi.org/10.1002/pola.10877 CrossRefGoogle Scholar
  27. Bru K, Blazy V, Joulian C, Trably E, Latrille E, Quéméneur M, Dictor M-C (2012) Innovative CO2 pretreatment for enhancing biohydrogen production from the organic fraction of municipal solid waste (OFMSW). Int J Hydrog Energy 37:14062–14071.  https://doi.org/10.1016/j.ijhydene.2012.06.111 CrossRefGoogle Scholar
  28. Brudecki G, Cybulska I, Rosentrater K (2013) Integration of extrusion and clean fractionation processes as a pre-treatment technology for prairie cordgrass. Bioresour Technol 135:672–682.  https://doi.org/10.1016/j.biortech.2012.10.132 CrossRefGoogle Scholar
  29. Buanafina M (2009) Feruloylation in grasses: current and future perspectives. Mol Plant 2:861–872.  https://doi.org/10.1093/mp/ssp067 CrossRefGoogle Scholar
  30. Bundhoo ZMA (2018) Microwave-assisted conversion of biomass and waste materials to biofuels. Renew Sustain Energy Rev 82:1149–1177.  https://doi.org/10.1016/j.rser.2017.09.066 CrossRefGoogle Scholar
  31. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crops Prod 28:237–259.  https://doi.org/10.1016/j.indcrop.2008.03.008 CrossRefGoogle Scholar
  32. Buranov AU, Mazza G (2009) Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem 115:1542–1548.  https://doi.org/10.1016/j.foodchem.2009.01.059 CrossRefGoogle Scholar
  33. Burnham CR, Brinks RA (1932) Linkage relations of a second brown midrib gene (bm2) in maize. J Am Soc Agron 24:960–963CrossRefGoogle Scholar
  34. Burton RA, Collins HM, Kibble NAJ, Smith JA, Shirley NJ, Jobling SA et al (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-beta-D-glucans and alters their fine structure. Plant Biotechnol J 9:117–135.  https://doi.org/10.1111/j.1467-7652.2010.00532.x CrossRefGoogle Scholar
  35. Camire ME (1998) Chemical changes during extrusion cooking—recent advances. Adv Exp Med Biol 434:109–121CrossRefGoogle Scholar
  36. Cao GL, Ren N, Wang A, Lee DJ, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 34:7182–7188.  https://doi.org/10.1016/j.ijhydene.2009.07.009 CrossRefGoogle Scholar
  37. Cardona CA, Sanchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457.  https://doi.org/10.1016/j.biortech.2007.01.002 CrossRefGoogle Scholar
  38. Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13:415–420.  https://doi.org/10.1016/j.tplants.2008.06.002 CrossRefGoogle Scholar
  39. Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G et al (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127:551–565.  https://doi.org/10.1104/pp.010146 CrossRefGoogle Scholar
  40. Cha YL, Yang J, Ahn JW, Moon YH, Yoon YM et al (2014) The optimized CO2-added ammonia explosion pretreatment for bioethanol production from rice straw. Bioprocess Biosyst Eng 37:1907–1915.  https://doi.org/10.1007/s00449-014-1165-x CrossRefGoogle Scholar
  41. Cha YL, Yang J, Seo SI, An GH, Moon YH, You GD et al (2016) Alkaline twin-screw extrusion pretreatment of Miscanthus with recycled black liquor at the pilot scale. Fuel 164:322–328.  https://doi.org/10.1016/j.fuel.2015.10.006 CrossRefGoogle Scholar
  42. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L (ed) Biofuels. Advances in biochemical engineering-biotechnology, vol 108. Springer, Berlin, pp 67–93.  https://doi.org/10.1007/10_2007_064 CrossRefGoogle Scholar
  43. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–6:5–37.  https://doi.org/10.1385/abab:84-86:1-9:5 CrossRefGoogle Scholar
  44. Charalampopoulos D (2013) Production of ferulic acid from wheat bran. Projet HGCA (Home Grown Cereals Authority UK)/ AHDB (Agriculture and Horticulture Development Board UK) Report No. 219–0004Google Scholar
  45. Chase MV, Reveal JL (2009) A phylogenetic classification of the land plants to accompany APG III. Bot J Linn Soc.  https://doi.org/10.1111/j.1095-8339.2009.01002.x CrossRefGoogle Scholar
  46. Chen WH, Pen BL, Yu CT, Hwang WS (2011a) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresour Technol 102:2916–2924.  https://doi.org/10.1016/j.biortech.2010.11.052 CrossRefGoogle Scholar
  47. Chen WH, Xu YY, Hwang WS, Wang JB (2011b) Pretreatment of rice straw using an extrusion/extraction process at bench-scale for producing cellulosic ethanol. Bioresour Technol 102:10451–10458.  https://doi.org/10.1016/j.biortech.2011.08.118 CrossRefGoogle Scholar
  48. Chen Y, Wang T, Shen N, Zhang F, Zeng RJ (2016) High-purity propionate production from glycerol in mixed culture fermentation. Bioresour Technol 219:659–667.  https://doi.org/10.1016/j.biortech.2016.08.026 CrossRefGoogle Scholar
  49. Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Van Ree R, de Jong E (2009) Toward a common classification approach for biorefinery systems. Biofuels Bioprod Biorefining 3:534–546.  https://doi.org/10.1002/bbb.172 CrossRefGoogle Scholar
  50. Chiesa S, Gnansounou E (2011) Protein extraction from biomass in a bioethanol refinery—possible dietary applications: use as animal feed and potential extension to human consumption. Bioresour Technol 102:427–436.  https://doi.org/10.1016/j.biortech.2010.07.125 CrossRefGoogle Scholar
  51. Choi CH, Kim JS, Oh KK (2013) Evaluation the efficacy of extrusion pretreatment via enzymatic digestibility and simultaneous saccharification and fermentation with rapeseed straw. Biomass Bioenergy 54:211–218.  https://doi.org/10.1016/j.biombioe.2013.04.005 CrossRefGoogle Scholar
  52. Chundawat SPS, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219–231.  https://doi.org/10.1002/bit.21132 CrossRefGoogle Scholar
  53. Chundawat SPS, Donohoe BS, Sousa LDC, Elder T et al (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4:973–984.  https://doi.org/10.1039/c0ee00574f CrossRefGoogle Scholar
  54. Cochennec C (2013) Natural vanillin obtained by means of bioconversion. Perfurm Flavor 38:20–22Google Scholar
  55. Coimbra MC, Duque A, Saez F, Manzanares P, Garcia-Cruz CH, Ballesteros M (2016) Sugar production from wheat straw biomass by alkaline extrusion and enzymatic hydrolysis. Renew Energy 86:1060–1068.  https://doi.org/10.1016/j.renene.2015.09.026 CrossRefGoogle Scholar
  56. Colonna P, Kammoun A, Montagne X, Sales C (2013) Quels végétaux et systèmes de production durables pour satisfaire les besoins en bioénergie, synthons et biomatériaux?. IFPEN, INRA, CiradGoogle Scholar
  57. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861.  https://doi.org/10.1038/nrm1746 CrossRefGoogle Scholar
  58. Culhaoglu T, Zheng D, Méchin V, Baumberger S (2011) Adaptation of the Carrez procedure for the purification of ferulic and p-coumaric acids released from lignocellulosic biomass prior to LC/MS analysis. J Chromatogr B 879:3017–3022.  https://doi.org/10.1016/j.jchromb.2011.08.039 CrossRefGoogle Scholar
  59. da Silva AS, Teixeira RSS, Endo T, Bon EPS, Lee SH (2013) Continuous pretreatment of sugarcane bagasse at high loading in an ionic liquid using a twin-screw extruder. Green Chem 15:1991–2001.  https://doi.org/10.1039/c3gc40352a CrossRefGoogle Scholar
  60. Damasio ARL, Braga CMP, Brenelli LB, Citadini AP, Mandelli F, Cota J et al (2013) Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Appl Microbiol Biotechnol 97:6759–6767.  https://doi.org/10.1007/s00253-012-4548-4 CrossRefGoogle Scholar
  61. de Oliveira DM, Finger-Teixeira A, Mota TR, Salvador VH, Moreira-Vilar FC et al (2015) Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol J 13:1224–1232.  https://doi.org/10.1111/pbi.12292 CrossRefGoogle Scholar
  62. de Paiva LB, Goldbeck R, dos Santos WD, Squina FM (2013) Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Braz J Pharm Sci 49:395–411CrossRefGoogle Scholar
  63. de Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation. Bioethanol Prod Bioenergy Res 6:564–579.  https://doi.org/10.1007/s12155-012-9268-1 CrossRefGoogle Scholar
  64. de Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrog Energy 27:1381–1390.  https://doi.org/10.1016/s0360-3199(02)00124-6 CrossRefGoogle Scholar
  65. Delgenes JP, Escare MC, Laplace JM, Moletta R, Navarro JM (1998) Biological production of industrial chemicals, i.e. xylitol and ethanol, from lignocelluloses by controlled mixed culture systems. Ind Crops Prod 7:101–111.  https://doi.org/10.1016/S0926-6690(97)00038-1 CrossRefGoogle Scholar
  66. DeMartini JD, Pattathil S, Miller JS, Li HJ, Hahn MG, Wyman CE (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ Sci 6:898–909.  https://doi.org/10.1039/c3ee23801f CrossRefGoogle Scholar
  67. Diaz AB, Moretti MMD, Bezerra-Bussoli C, Nunes CDC, Blandino A, da Silva R, Gomes E (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol 185:316–323.  https://doi.org/10.1016/j.biortech.2015.02.112 CrossRefGoogle Scholar
  68. Dien BS, Li XL, Iten LB, Jordan DB, O’Bryan PJ, Cotta MA (2006) Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides. Enzyme Microb Technol 39:1137–1144.  https://doi.org/10.1016/j.enzmictec.2006.02.022 CrossRefGoogle Scholar
  69. Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1:2–17.  https://doi.org/10.1111/j.1757-1707.2009.01004.x CrossRefGoogle Scholar
  70. Duque A, Manzanares P, Ballesteros M (2017) Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Renew Energy 114:1427–1441.  https://doi.org/10.1016/j.renene.2017.06.050 CrossRefGoogle Scholar
  71. E4tech (2018) From the sugar platform to biofuels and biochemicalsGoogle Scholar
  72. EC (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0028. Accessed 8 Aug 2018
  73. Eckard AD, Muthukumarappan K, Gibbons W (2012) Pretreatment of extruded corn stover with polyethylene glycol to enhance enzymatic hydrolysis: optimization, kinetics, and mechanism of action. Bioenergy Res 5:424–438.  https://doi.org/10.1007/s12155-011-9162-2 CrossRefGoogle Scholar
  74. Edwards EJ, Osborne CP, Stromberg CAE, Smith SA (2010) The origines of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591.  https://doi.org/10.1126/science.1177216 CrossRefGoogle Scholar
  75. Es I, Khaneghah AM, Hashemi SMB, Koubaa M (2017) Current advances in biological production of propionic acid. Biotechnol Lett 39:635–645.  https://doi.org/10.1007/s10529-017-2293-6 CrossRefGoogle Scholar
  76. Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI et al (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 10:609–620.  https://doi.org/10.1111/j.1467-7652.2012.00692.x CrossRefGoogle Scholar
  77. Eudes A, Sathitsuksanoh N, Baidoo EEK, George A, Liang Y et al (2015) Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnol J 13:1241–1250.  https://doi.org/10.1111/pbi.12310 CrossRefGoogle Scholar
  78. FAO (2014) Bioénergie et sécurité alimentaire evaluation rapideGoogle Scholar
  79. FAO (2018) Food and Agriculture Organization of the United Nations, data, crops. http://www.fao.org/faostat/en/#data/QC. Accessed 27 June 2018
  80. Faure JD, Tepfer M (2016) Camelina, a Swiss knife for plant lipid biotechnology. OCL oilseedfats crops lipids 23:9.  https://doi.org/10.1051/ocl/2016023 CrossRefGoogle Scholar
  81. Fengel D, Grosser D (1975) Chemical composition of softwoods and hardwoods—bibliographical review Holz Als Roh-und Werkst 33:32.  https://doi.org/10.1007/bf02612913 CrossRefGoogle Scholar
  82. Figueiredo R, Cesarino I, Mazzafera P (2016) Suberin as an extra barrier to grass digestibility: a closer look to sugarcane forage. Trop Plant Biol 9:96–108.  https://doi.org/10.1007/s12042-016-9166-3 CrossRefGoogle Scholar
  83. Fornale S, Shi X, Chai C, Encina A, Irar S, Capellades M, Fuguet E et al (2010) ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J Cell Mol Biol 64:633–644.  https://doi.org/10.1111/j.1365-313X.2010.04363.x CrossRefGoogle Scholar
  84. FranceAgriMer (2017) Rapport d’Activité 2016Google Scholar
  85. Fu Z, Holtzapple MT (2011) Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse. Appl Microbiol Biotechnol 90:1669–1679.  https://doi.org/10.1007/s00253-011-3178-6 CrossRefGoogle Scholar
  86. Fu CX, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M et al (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108:3803–3808.  https://doi.org/10.1073/pnas.1100310108 CrossRefGoogle Scholar
  87. Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46.  https://doi.org/10.1039/b713289a CrossRefGoogle Scholar
  88. Gabhane J, William S, Vaidya AN, Mahapatra K, Chakrabarti T (2011) Influence of heating source on the efficacy of lignocellulosic pretreatment—a cellulosic ethanol perspective. Biomass Bioenergy 35:96–102.  https://doi.org/10.1016/j.biombioe.2010.08.026 CrossRefGoogle Scholar
  89. Garcia BL, Ball AS, Rodriguez J, Perez-Leblic MI, Arias ME, Copa-Patino JL (1998) Induction of ferulic acid esterase and xylanase activities in Streptomyces avermitilis UAH30. FEMS Microbiol Lett 158:95–99.  https://doi.org/10.1016/s0378-1097(97)00509-0 CrossRefGoogle Scholar
  90. Garcia-Cubero MT, Gonzalez-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613.  https://doi.org/10.1016/j.biortech.2008.09.012 CrossRefGoogle Scholar
  91. Gaspar M, Kalman G, Reczey K (2007) Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem 42:1135–1139.  https://doi.org/10.1016/j.procbio.2007.04.003 CrossRefGoogle Scholar
  92. Ghose TK, Pannirselvam PV, Ghosh P (1983) Catalytic solvent delignification of agricultural residues—organic catalysts. Biotechnol Bioeng 25:2577–2590.  https://doi.org/10.1002/bit.260251108 CrossRefGoogle Scholar
  93. Gnansounou E, Pandey A (2017) Classification of biorefineries taking into account sustainability potentials and flexibility. In: Gnansounou E, Pandey A (eds) Life-cycle assessment of biorefineries. Elsevier, Amsterdam, pp 1–39.  https://doi.org/10.1016/b978-0-444-63585-3.00001-2 CrossRefGoogle Scholar
  94. Godin B, Ghysel F, Agneessens R, Schmit T, Gofflot S, Lamaudière S et al (2010) Cellulose, hemicelluloses, lignin, and ash contents in various lignocellulosic crops for second generation bioethanol production. Biotechnol Agron Soc 14:549–560Google Scholar
  95. Gogoi G, Hazarika S (2017) Coupling of ionic liquid treatment and membrane filtration for recovery of lignin from lignocellulosic biomass. Sep Purif Technol 173:113–120.  https://doi.org/10.1016/j.seppur.2016.09.019 CrossRefGoogle Scholar
  96. Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin–cell wall matrix interactions. Comptes Rendus Biol 327:455–465.  https://doi.org/10.1016/j.crvi.2004.02.009 CrossRefGoogle Scholar
  97. Grethlein HE (1985) The effect of pore-size distribution on the rate of enzymatic-hydrolysis of cellulosic substrates. Biotechnology 3:155–160.  https://doi.org/10.1038/nbt0285-155 CrossRefGoogle Scholar
  98. Grohmann K, Mitchell DJ, Himmel ME, Dale BE, Schroeder HA (1989) The role of ester groups in resistance of plant-cell wall polysaccharides to enzymatic-hydrolysis. Appl Biochem Biotechnol 20–1:45–61.  https://doi.org/10.1007/bf02936472 CrossRefGoogle Scholar
  99. Gu TY, Held MA, Faik A (2013) Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. Environ Technol 34:1735–1749.  https://doi.org/10.1080/09593330.2013.809777 CrossRefGoogle Scholar
  100. Guo L, Li XM, Bo X, Yang Q, Zeng GM, Liao DX, Liu JJ (2008) Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour Technol 99:3651–3658.  https://doi.org/10.1016/j.biortech.2007.07.026 CrossRefGoogle Scholar
  101. Haag NL, Grumaz C, Wiese F, Kirstahler P, Merkle W et al (2016) Advanced green biorefining: effects of ensiling treatments on lactic acid production, microbial activity and supplementary methane formation of grass and rye. Biomass Convers Biorefinery 6:197–208.  https://doi.org/10.1007/s13399-015-0178-2 CrossRefGoogle Scholar
  102. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582.  https://doi.org/10.1111/j.1742-4658.2010.07585.x CrossRefGoogle Scholar
  103. Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B et al (1998) Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553.  https://doi.org/10.1046/j.1365-313X.1998.00153.x CrossRefGoogle Scholar
  104. Harmsen PFH, Huijgen WJJ, Bermúdez López LM, Bakker RRC (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. BioSynergy projectGoogle Scholar
  105. Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8:244–262.  https://doi.org/10.1111/j.1467-7652.2009.00481.x CrossRefGoogle Scholar
  106. Hartley RD (1983) Degradation of cell-wall of forages by sequential treatment with sodium-hydroxyde and a commercial cellulase preparation. J Sci Food Agric 34:29–36.  https://doi.org/10.1002/jsfa.2740340106 CrossRefGoogle Scholar
  107. Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839.  https://doi.org/10.2135/cropsci2004.0238 CrossRefGoogle Scholar
  108. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807.  https://doi.org/10.1126/science.1137016 CrossRefGoogle Scholar
  109. Hsu TA, Ladisch MR, Tsao GT (1980) Alcohol from cellulose. Chemtech 10:315–319Google Scholar
  110. IEA (2017) Key world energy statistics. International Energy Agency, ParisGoogle Scholar
  111. IFPEN (2015) Biocarburants de deuxième generation: une nouvelle étape de franchieGoogle Scholar
  112. Iiyama K, Lam TBT, Stone BA (1994) Covalent cross-links in the cell-wall. Plant Physiol 104:315–320CrossRefGoogle Scholar
  113. Imman S, Arnthong J, Burapatana V, Champreda V, Laosiripojana N (2014) Effects of acid and alkali promoters on compressed liquid hot water pretreatment of rice straw. Bioresour Technol 171:29–36.  https://doi.org/10.1016/j.biortech.2014.08.022 CrossRefGoogle Scholar
  114. Isci A, Himmelsbach JN, Pometto AL, Raman DR, Anex RP (2008) Aqueous ammonia soaking of switchgrass followed by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 144:69–77.  https://doi.org/10.1007/s12010-007-8008-z CrossRefGoogle Scholar
  115. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559.  https://doi.org/10.1039/c5py00263j CrossRefGoogle Scholar
  116. Isroi MR, Syamsiah S, Niklasson C, Cahyanto MN, Lundquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259Google Scholar
  117. Jackowiak D, Frigon JC, Ribeiro T, Pauss A, Guiot S (2011) Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresour Technol 102:3535–3540.  https://doi.org/10.1016/j.biortech.2010.11.069 CrossRefGoogle Scholar
  118. Jalc D, Siroka P, Ceresnakova Z (1997) Effect of six species of white tot basidiomycetes on the chemical composition and rumen degradability of wheat straw. J Gen Appl Microbiol 43:133–137CrossRefGoogle Scholar
  119. Jin MJ, Lau MW, Balan V, Dale BE (2010) Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour Technol 101:8171–8178.  https://doi.org/10.1016/j.biortech.2010.06.026 CrossRefGoogle Scholar
  120. Jonsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112.  https://doi.org/10.1016/j.biortech.2015.10.009 CrossRefGoogle Scholar
  121. Jung H, Philipps R (2010) Putative seedling serulate ester (sfe) maize mutant: morphology, biomass yield, and stover cell wall composition and rumen digestibility. Crop Sci 50:403–418CrossRefGoogle Scholar
  122. Kang KE, Han M, Moon SK, Kang HW, Kim Y, Cha YL, Choi GW (2013) Optimization of alkali-extrusion pretreatment with twin-screw for bioethanol production from Miscanthus. Fuel 109:520–526.  https://doi.org/10.1016/j.fuel.2013.03.026 CrossRefGoogle Scholar
  123. Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568.  https://doi.org/10.1016/j.biortech.2008.11.01 CrossRefGoogle Scholar
  124. Karampinis E, Grammelis P (2010) Introduction to herbaceous biomass, Bioenarea. http://bisyplan.bioenarea.eu/html-files-en/01-02.pdf. Accessed 4 Sept 2018
  125. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018.  https://doi.org/10.1016/j.biortech.2015.11.022 CrossRefGoogle Scholar
  126. Karunanandaa K, Fales SL, Varga GA, Royse DJ (1992) Chemical composition and biodegradability of crop residues colonized by white-rot fungi. J Sci Food Agric.  https://doi.org/10.1002/jsfa.2740600117 CrossRefGoogle Scholar
  127. Karunanithy C, Muthukumarappan K (2011) Optimization of switchgrass and extruder parameters for enzymatic hydrolysis using response surface methodology. Ind Crops Prod 33:188–199.  https://doi.org/10.1016/j.indcrop.2010.10.008 CrossRefGoogle Scholar
  128. Khan NA, Cone JW, Fievez V, Hendriks WH (2012) Causes of variation in fatty acid content and composition in grass and maize silages. Anim Feed Sci Technol 174:36–45.  https://doi.org/10.1016/j.anifeedsci.2012.02.006 CrossRefGoogle Scholar
  129. Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994–2006.  https://doi.org/10.1016/j.biortech.2005.01.014 CrossRefGoogle Scholar
  130. Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591.  https://doi.org/10.1016/j.biortech.2005.03.040 CrossRefGoogle Scholar
  131. Kim TH, Lee YY (2007) Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl Biochem Biotechnol 137:81–92.  https://doi.org/10.1007/s12010-007-9041-7 CrossRefGoogle Scholar
  132. Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47.  https://doi.org/10.1016/s0960-8524(03)00097-x CrossRefGoogle Scholar
  133. Kim TH, Gupta R, Lee YY (2009) Pretreatment of biomass by aqueous ammonia for bioethanol production. In: Mielenz JR (ed) Biofuels: methods and protocols. Methods in molecular biology, vol 581. Humana Press Inc, Totowa, pp 79–91.  https://doi.org/10.1007/978-1-60761-214-8_6 CrossRefGoogle Scholar
  134. Kim ES, Liu S, Abu-Omar MM, Mosier NS (2012a) Selective conversion of biomass hemicellulose to furfural using maleic acid with microwave heating. Energy Fuels 26:1298–1304.  https://doi.org/10.1021/ef2014106 CrossRefGoogle Scholar
  135. Kim DH, Lim WT, Lee MK, Kim MS (2012b) Effect of temperature on continuous fermentative lactic acid (LA) production and bacterial community, and development of LA-producing UASB reactor. Bioresour Technol 119:355–361.  https://doi.org/10.1016/j.biortech.2012.05.027 CrossRefGoogle Scholar
  136. King D, Williams A, Inderwildi OR (2010) The future of industrial biorefineries. World Economic Forum, ColognyGoogle Scholar
  137. Kitchaiya P, Intanakul P, Krairiksh M (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric-pressure. J Wood Chem Technol 23:217–225.  https://doi.org/10.1081/wct-120021926 CrossRefGoogle Scholar
  138. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie-International Edition 44:3358–3393.  https://doi.org/10.1002/anie.200460587 CrossRefGoogle Scholar
  139. Kobayashi F, Take H, Asada C, Nakamura Y (2004) Methane production from steam-exploded bamboo. J Biosci Bioeng 97:426–428.  https://doi.org/10.1016/s1389-1723(04)70231-5 CrossRefGoogle Scholar
  140. Koseki T, Fushinobu S, Ardiansyah SH, Komai M (2009) Occurrence, properties, and applications of feruloyl esterases. Appl Microbiol Biotechnol 84:803–810.  https://doi.org/10.1007/s00253-009-2148-8 CrossRefGoogle Scholar
  141. Koullas DP, Christakopoulos P, Kekos D, Macris BJ, Koukios EG (1992) Correlating the effect of pretreatment on the enzymatic-hydrolysis of straw. Biotechnol Bioeng 39:113–116.  https://doi.org/10.1002/bit.260390116 CrossRefGoogle Scholar
  142. Kuhar S, Nair LM, Kuhad RC (2008) Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can J Microbiol 54:305–313.  https://doi.org/10.1139/w08-003 CrossRefGoogle Scholar
  143. Kumar R, Wyman CE (2009) Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Prog 25:807–819.  https://doi.org/10.1002/btpr.153 CrossRefGoogle Scholar
  144. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2011) Pulsed electric field pretreatment of switchgrass and wood chip species for biofuel production. Ind Eng Chem Res.  https://doi.org/10.1021/ie200555u CrossRefGoogle Scholar
  145. Lamsal B, Yoo J, Brijwani K, Alavi S (2010) Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass Bioenergy 34:1703–1710.  https://doi.org/10.1016/j.biombioe.2010.06.009 CrossRefGoogle Scholar
  146. Lapierre C, Jouin D, Monties B (1989) On the molecular-origin of the alkali solubility of gramineae lignins. Phytochemistry 28:1401–1403.  https://doi.org/10.1016/s0031-9422(00)97755-0 CrossRefGoogle Scholar
  147. Lawrence CJ, Walbot V (2007) Translational genomics for bioenergy production from fuelstock grasses: maize as the model species. Plant Cell 19:2091–2094.  https://doi.org/10.1105/tpc.107.053660 CrossRefGoogle Scholar
  148. Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y et al (2015) A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sustain Energy Rev 42:963–972.  https://doi.org/10.1016/j.rser.2014.10.033 CrossRefGoogle Scholar
  149. Lens P, Westermann P, Haberbauer M, Moreno A (eds) (2005) Biofuels for fuels cells renewable energy from biomass fermentation. Integrated environmental technology. IWA Publishing, LondonGoogle Scholar
  150. Lewandowski I, Heinz A (2003) Delayed harvest of miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron 19:45–63.  https://doi.org/10.1016/s1161-0301(02)00018-7 CrossRefGoogle Scholar
  151. Li HQ, Xu J (2013) Optimization of microwave-assisted calcium chloride pretreatment of corn stover. Bioresour Technol 127:112–118.  https://doi.org/10.1016/j.biortech.2012.09.114 CrossRefGoogle Scholar
  152. Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575.  https://doi.org/10.1016/j.biortech.2009.02.040 CrossRefGoogle Scholar
  153. Li CL, Cheng G, Balan V, Kent MS, Ong M, Chundawat SPS et al (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102:6928–6936.  https://doi.org/10.1016/j.biortech.2011.04.005 CrossRefGoogle Scholar
  154. Li Y, Fabiano-Tixier AS, Abert-Vian M, Chemat F (2012) Microwave-assisted extraction of antioxidants and food colors. In: Chemat F, Cravotto G (eds) Microwave-assisted extraction for bioactive compounds. Food engineering series. Springer, BostonGoogle Scholar
  155. Linde M, Jakobsson EL, Galbe M, Zacchi G (2008) Steam inretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 32:326–332.  https://doi.org/10.1016/j.biombioe.2007.09.013 CrossRefGoogle Scholar
  156. Liu LY, Chen HZ (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid BMIM Cl. Chin Sci Bull 51:2432–2436.  https://doi.org/10.1007/s11434-006-2134-9 CrossRefGoogle Scholar
  157. Liu ZH, Chen HZ (2015) Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility. Bioresour Technol 193:345–356.  https://doi.org/10.1016/j.biortech.2015.06.114 CrossRefGoogle Scholar
  158. Liu CG, Wyman CE (2003) The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Ind Eng Chem Res 42:5409–5416.  https://doi.org/10.1021/ie030458k CrossRefGoogle Scholar
  159. Liu C, van der Heide E, Wang HS, Li B, Yu G, Mu XD (2013) Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnol Biofuels 6:11.  https://doi.org/10.1186/1754-6834-6-97 CrossRefGoogle Scholar
  160. Lizasoain J, Trulea A, Gittinger J, Kral I, Piringer G et al (2017) Corn stover for biogas production: effect of steam explosion pretreatment on the gas yields and on the biodegradation kinetics of the primary structural compounds. Bioresour Technol 244:949–956.  https://doi.org/10.1016/j.biortech.2017.08.042 CrossRefGoogle Scholar
  161. Loque D, Scheller HV, Pauly M (2015) Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol 25:151–161.  https://doi.org/10.1016/j.pbi.2015.05.018 CrossRefGoogle Scholar
  162. Lu HS, Liu SY, Zhang MH, Meng FM, Shi XF, Yan L (2016) Investigation of the strengthening process for liquid hot water pretreatments. Energy Fuels 30:1103–1108.  https://doi.org/10.1021/acs.energyfuels.5b02658 CrossRefGoogle Scholar
  163. Luo XL, Zhu JY, Gleisner R, Zhan HY (2011) Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. Cellulose 18:1055–1062.  https://doi.org/10.1007/s10570-011-9541-z CrossRefGoogle Scholar
  164. Luterbacher JS, Alonso DM, Dumesic JA (2014) Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem 16:4816–4838.  https://doi.org/10.1039/c4gc01160k CrossRefGoogle Scholar
  165. Lygin AV, Upton J, Dohleman FG, Juvik J, Zabotina OA et al (2011) Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop—Miscanthus. Glob Change Biol Bioenergy 3:333–345.  https://doi.org/10.1111/j.1757-1707.2011.01091.x CrossRefGoogle Scholar
  166. MacElroy JMD (2016) Closing the carbon cycle through rational use of carbon-based fuels. Ambio 45:5–14.  https://doi.org/10.1007/s13280-015-0728-7 CrossRefGoogle Scholar
  167. Manabe Y, Verhertbruggen Y, Gille S, Harholt J, Chong SL et al (2013) Reduced wall acetylation proteins play vital and distinct roles in cell wall O-acetylation in arabidopsis. Plant Physiol 163:1107–1117.  https://doi.org/10.1104/pp.113.225193 CrossRefGoogle Scholar
  168. Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816.  https://doi.org/10.1021/bp9900864 CrossRefGoogle Scholar
  169. Mariotti F, Tome D, Mirand PP (2008) Converting nitrogen into protein—beyond 6.25 and Jones’ factors. Crit Rev Food Sci Nutr 48:177–184.  https://doi.org/10.1080/10408390701279749 CrossRefGoogle Scholar
  170. Markham JE, Molino D, Gissot L, Bellec Y, Hematy K, Marion J et al (2011) Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in arabidopsis. Plant Cell 23:2362–2378.  https://doi.org/10.1105/tpc.110.080473 CrossRefGoogle Scholar
  171. Martin C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40:426–432.  https://doi.org/10.1016/j.enzmictec.2006.07.015 CrossRefGoogle Scholar
  172. Martin C, Marcet M, Thomsen AB (2008) Comparison between wet oxydation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse. Bioresources 3:670–683Google Scholar
  173. McCann MC, Carpita NC (2015) Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. J Exp Bot 66:4109–4118.  https://doi.org/10.1093/jxb/erv267 CrossRefGoogle Scholar
  174. McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101:6718–6727.  https://doi.org/10.1016/j.biortech.2010.03.116 CrossRefGoogle Scholar
  175. Méchin V, Argillier O, Menanteau V, Barrière Y, Mila I, Pollet B, Lapierre C (2000) Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems. J Sci Food Agric 80:574–580.  https://doi.org/10.1002/(sici)1097-0010(200004)80:5%3c574:aid-jsfa575%3e3.0.co;2-r CrossRefGoogle Scholar
  176. Meineke T, Manisseri C, Voigt CA (2014) Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of brachypodium distachyon, wheat, maize, and miscanthus × giganteus leaf and stem biomass. PLoS ONE.  https://doi.org/10.1371/journal.pone.0103580 CrossRefGoogle Scholar
  177. Meng XZ, Pu YQ, Yoo CG, Li M et al (2017) An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock. Chemsuschem 10:139–150.  https://doi.org/10.1002/cssc.201601303 CrossRefGoogle Scholar
  178. Mesa L, Gonzalez E, Cara C, Ruiz E, Castro E, Mussatto SI (2010) An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. J Chem Technol Biotechnol 85:1092–1098.  https://doi.org/10.1002/jctb.2404 CrossRefGoogle Scholar
  179. Michelin M, Teixeira JA (2016) Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresour Technol 216:862–869.  https://doi.org/10.1016/j.biortech.2016.06.018 CrossRefGoogle Scholar
  180. Mishra A, Vats T, Clark JH (2016) Microwave radiations: theory and instrumentation. In: Mishra A, Vats T, Clark JH (eds) Microwave-assisted polymerization. RSC green chemistry series, vol 35. Royal Society of Chemistry, Cambridge, pp 1–18Google Scholar
  181. Mittal A, Vinzant TB, Brunecky R, Black SK, Pilath HM, Himmel ME, Johnson DK (2015) Investigation of the role of lignin in biphasic xylan hydrolysis during dilute acid and organosolv pretreatment of corn stover. Green Chem 17:1546–1558.  https://doi.org/10.1039/c4gc02258k CrossRefGoogle Scholar
  182. Mohapatra S, Mishra C, Behera SS, Thatoi H (2017) Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—a review. Renew Sust Energy Rev 78:1007–1032.  https://doi.org/10.1016/j.rser.2017.05.026 CrossRefGoogle Scholar
  183. Monlau F, Barakat A, Trably E, Dumas C, Steyer JP, Carrère H (2013) Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol 43:260–322.  https://doi.org/10.1080/10643389.2011.604258 CrossRefGoogle Scholar
  184. Monlau F, Sambusiti C, Barakat A, Quemeneur M, Trably E, Steyer JP, Carrere H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951.  https://doi.org/10.1016/j.biotechadv.2014.04007 CrossRefGoogle Scholar
  185. Mooney CA, Mansfield SD, Beatson RP, Saddler JN (1999) The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates. Enzyme Microb Technol 25:644–650.  https://doi.org/10.1016/s0141-0229(99)00098-8 CrossRefGoogle Scholar
  186. Moscoviz R, Trably E, Bernet N (2016) Consistent 1,3-propanediol production from glycerol in mixed culture fermentation over a wide range of pH. Biotechnol Biofuels 9:32.  https://doi.org/10.1186/s13068-016-0447-8 CrossRefGoogle Scholar
  187. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686.  https://doi.org/10.1016/j.biortech.2004.06.025 CrossRefGoogle Scholar
  188. Mullet JE (2017) High-biomass C4 grasses-filling the yield gap. Plant Sci 261:10–17.  https://doi.org/10.1016/j.plantsci.2017.05.003 CrossRefGoogle Scholar
  189. Mulvaney SJ, Rizvi SSH (1993) Extrusion processing with supercritical fluids. Food Technol 47:74Google Scholar
  190. Murnen HK, Balan V, Chundawat SPS, Bals B, Sousa LD, Dale BE (2007) Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars. Biotechnol Prog 23:846–850.  https://doi.org/10.1021/bp070098m CrossRefGoogle Scholar
  191. Mussatto SI, Dragone GM (2016) Chapter 1: biomass pretreatment, biorefineries, and potential products for a bioeconomy development. In: Mussatto SI (ed) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Amsterdam, pp 1–22.  https://doi.org/10.1016/B978-0-12-802323-5.00001-3 CrossRefGoogle Scholar
  192. Narayanaswamy N, Faik A, Goetz DJ, Gu TY (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000.  https://doi.org/10.1016/j.biortech.2011.04.052 CrossRefGoogle Scholar
  193. Nikolic S, Mojovic L, Rakin M, Pejin D, Pejin J (2011) Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Clean Technol Environ Policy 13:587–594.  https://doi.org/10.1007/s10098-011-0366-0 CrossRefGoogle Scholar
  194. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373:1–56.  https://doi.org/10.1016/j.apcata.2009.10.008 CrossRefGoogle Scholar
  195. Orozco A, Ahmad M, Rooney D, Walker G (2007) Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Saf Environ Protect 85:446–449.  https://doi.org/10.1205/psep0700310.1016/B978-0-12-802444-7.00005-7 CrossRefGoogle Scholar
  196. Ouellette RJ, Rawn JD (2015) Aromatic compounds. In: Principles of organic chemistry. Elsevier, pp 133–162.  https://doi.org/10.1016/b978-0-12-802444-7.00005-7 CrossRefGoogle Scholar
  197. Pan XJ (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobased Mater Bioenergy 2:25–32.  https://doi.org/10.1166/jbmb.2008.005 CrossRefGoogle Scholar
  198. Paping B, Van de ven K, Wohl R (2014) Opportunities for the refinement of grass-Friesland Campina. Universiteit of Amsterdam. http://www.teslaminor.nl/wp-content/uploads/2014/03/Opportunities-for-the-refinement-of-grass.pdf. Accessed 4 Oct 2018
  199. Parajuli R, Knudsen MT, Dalgaard T (2015) Multi-criteria assessment of yellow, green, and woody biomasses: pre-screening of potential biomasses as feedstocks for biorefineries. Biofuels Bioprod Biorefining 9:545–566.  https://doi.org/10.1002/bbb.1567 CrossRefGoogle Scholar
  200. Park CY, Ryu YW, Kim C (2001) Kinetics and rate of enzymatic hydrolysis of cellulose in supercritical carbon dioxide Korean. J Chem Eng 18:475–478.  https://doi.org/10.1007/bf02698293 CrossRefGoogle Scholar
  201. Parsell TH et al (2013) Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chem Sci 4:806–813.  https://doi.org/10.1039/c2sc21657d CrossRefGoogle Scholar
  202. Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305–312.  https://doi.org/10.1016/j.pbi.2009.12.009 CrossRefGoogle Scholar
  203. Pedersen M, Meyer AS (2009) Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol Prog 25:399–408.  https://doi.org/10.1021/bp.141 CrossRefGoogle Scholar
  204. Peleteiro S, Rivas S, Alonso JL, Santos V, Parajo JC (2015) Utilization of ionic liquids in lignocellulose biorefineries as agents for separation, derivatization, fractionation, or pretreatment. J Agric Food Chem 63:8093–8102.  https://doi.org/10.1021/acs.jafc.5b03461 CrossRefGoogle Scholar
  205. Peng F, Ren JL, Xu F, Sun RC (2011) Chemicals from hemicelluloses: a review. In: Zhu JJY, Zhang X, Pan XJ (eds) Sustainable production of fuels, chemicals, and fibers from forest biomass, vol 1067. ACS symposium series. Amer Chemical Soc, Washington, pp 219–259CrossRefGoogle Scholar
  206. Peng HD, Li HQ, Luo H, Xu J (2013) A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose. Bioresour Technol 130:81–87.  https://doi.org/10.1016/j.biortech.2012.10.167 CrossRefGoogle Scholar
  207. Perez JA, Gonzalez A, Oliva JM, Ballesteros I, Manzanares P (2007) Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor. J Chem Technol Biotechnol 82:929–938.  https://doi.org/10.1002/jctb.1765 CrossRefGoogle Scholar
  208. Perez-Rodriguez N, Garcia-Bernet D, Dominguez JM (2017) Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production. Renew Energy 107:597–603.  https://doi.org/10.1016/j.renene.2017.02.030 CrossRefGoogle Scholar
  209. Phitsuwan P, Sakka K, Ratanakhanokchai K (2013) Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass Bioenergy 58:390–405.  https://doi.org/10.1016/j.biombioe.2013.08.027 CrossRefGoogle Scholar
  210. Pourali O, Asghari FS, Yoshida H (2010) Production of phenolic compounds from rice bran biomass under subcritical water conditions. Chem Eng J 160:259–266.  https://doi.org/10.1016/j.cej.2010.02.057 CrossRefGoogle Scholar
  211. Pu YQ, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33.  https://doi.org/10.1080/02773810701282330 CrossRefGoogle Scholar
  212. Rao LV, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol 213:299–310.  https://doi.org/10.1016/j.biortech.2016.04.092 CrossRefGoogle Scholar
  213. Raven JA (2013) Rubisco: Still the most abundant protein of Earth? N Phytol 198:1–3.  https://doi.org/10.1111/nph.12197 CrossRefGoogle Scholar
  214. Rodriguez C, Alaswad A, Benyounis KY, Olabi AG (2017) Pretreatment techniques used in biogas production from grass. Renew Sust Energy Rev 68:1193–1204.  https://doi.org/10.1016/j.rser.2016.02.022 CrossRefGoogle Scholar
  215. Rogalinski T, Ingram T, Brunner G (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47:54–63.  https://doi.org/10.1016/j.supflu.2008.05.003 CrossRefGoogle Scholar
  216. Rombaut N, Tixier AS, Bily A, Chemat F (2014) Green extraction processes of natural products as tools for biorefinery. Biofuels Bioprod Biorefining 8:530–544.  https://doi.org/10.1002/bbb.1486 CrossRefGoogle Scholar
  217. Rothschild Z et al (1991) Xylitol—a non-cariogenic sugar obtained from grasses of the genus aristida and related species. Arq Biol Technol 34:61–71Google Scholar
  218. Rouches E, Herpoel-Gimbert I, Steyer JP, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sust Energ Rev 59:179–198.  https://doi.org/10.1016/j.rser.2015.12.317 CrossRefGoogle Scholar
  219. Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res 1:193–204.  https://doi.org/10.1007/s12155-008-9025-7 CrossRefGoogle Scholar
  220. Sagnes C, Chabrelie M-F (2015) Biocarburants de deuxième génération: une nouvelle étape est franchie. PARIS 2015 COP21Google Scholar
  221. Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453.  https://doi.org/10.1021/bp050310r CrossRefGoogle Scholar
  222. Saini JK (2016) Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew Energy.  https://doi.org/10.1016/j.renene.2016.03.089 CrossRefGoogle Scholar
  223. Salerno MB, Lee HS, Parameswaran P, Rittmann BE (2009) Using a pulsed electric field as a pretreatment for improved biosolids digestion and methanogenesis Water environment research: a research publication of the water. Environ Fed 81:831–839Google Scholar
  224. Sattler SE, Saballos A, Xin ZG, Funnell-Harris DL, Vermerris W, Pedersen JF (2014) Characterization of novel sorghum brown midrib mutants from an EMS-mutagenized population. G3 Genes Genomes Genet 4:2115–2124.  https://doi.org/10.1534/g3.114.014001 CrossRefGoogle Scholar
  225. Scordia D, Cosentino SL, Jeffries TW (2010) Second generation bioethanol production from Saccharum spontaneum L. ssp aegyptiacum (Willd.) Hack. Bioresour Technol 101:5358–5365.  https://doi.org/10.1016/j.biortech.2010.02.036 CrossRefGoogle Scholar
  226. Scordia D, Testa G, Cosentino SL (2014) Perennial grasses as lignocellulosic feedstock for second-generation bioethanol production in Mediterranean environment. Ital J Agron 9:84–92.  https://doi.org/10.1081/ija.2014.581 CrossRefGoogle Scholar
  227. Sewalt VJH, Glasser WG, Beauchemin KA (1997) Lignin impact on fiber degradation.3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J Agric Food Chem 45:1823–1828.  https://doi.org/10.1021/jf9608074 CrossRefGoogle Scholar
  228. Sharma R, Palled V, Sharma-Shivappa RR, Osborne J (2013) Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production. Appl Biochem Biotechnol 169:761–772.  https://doi.org/10.1007/s12010-012-0009-x CrossRefGoogle Scholar
  229. Shatalov AA, Pereira H (2008) Arundo donax L. reed: new perspectives for pulping and bleaching. 5. Ozone-based TCF bleaching of organosolv pulps. Bioresour Technol 99:472–478.  https://doi.org/10.1016/j.biortech.2007.01.014 CrossRefGoogle Scholar
  230. Shen JC, Agblevor FA (2008) Optimization of enzyme loading and hydrolytic time in the hydrolysis of mixtures of cotton gin waste and recycled paper sludge for the maximum profit rate. Biochem Eng J 41:241–250.  https://doi.org/10.1016/j.bej.2008.05.001 CrossRefGoogle Scholar
  231. Sherman SR, Goodell JJ, Milliken CE, Morris JA, Gorensek MB (2012) A new process developed for separation of lignin from ammonium hydroxide pretreatment solutions. Environ Prog Sustain Energy 31:130–138.  https://doi.org/10.1002/ep.10544 CrossRefGoogle Scholar
  232. Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96.  https://doi.org/10.1016/j.biombioe.2008.04.016 CrossRefGoogle Scholar
  233. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283.  https://doi.org/10.1128/mmbr.00028-05 CrossRefGoogle Scholar
  234. Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology, Joint FAO/IAEA division of nuclear techniques in food and agriculture international atomic energy agency, Vienna, Austria. http://www.fao.org/3/a-i2388e.pdf. Accessed 4 Oct 2018
  235. Sierra R, Granda CB, Holtzapple MT (2009) Lime pretreatment. In: Mielenz JR (ed) Biofuels: methods and protocols. Methods in molecular biology, vol 581. Humana Press Inc, Totowa, pp 115–124.  https://doi.org/10.1007/978-1-60761-214-8_9 CrossRefGoogle Scholar
  236. Silveira RL, Stoyanov SR, Gusarov S, Skaf MS, Kovalenko A (2013) Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength. J Am Chem Soc 135:19048–19051.  https://doi.org/10.1021/ja405634k CrossRefGoogle Scholar
  237. Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631.  https://doi.org/10.1016/j.carbpol.2014.10.012 CrossRefGoogle Scholar
  238. Socha AM, Parthasarathi R, Shi J, Pattathil S, Whyte D et al (2014) Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc Natl Acad Sci USA 111:E3587–E3595.  https://doi.org/10.1073/pnas.1405685111 CrossRefGoogle Scholar
  239. Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 39:352–361.  https://doi.org/10.1016/j.enzmictec.2005.11.043 CrossRefGoogle Scholar
  240. Srinivasan N, Ju LK (2010) Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresour Technol 101:9785–9791.  https://doi.org/10.1016/j.biortech.2010.07.069 CrossRefGoogle Scholar
  241. Stoklosa RJ, Hodge DB (2012) Extraction, recovery, and characterization of hardwood and grass hemicelluloses for integration into biorefining processes. Ind Eng Chem Res 51:11045–11053.  https://doi.org/10.1021/ie301260w CrossRefGoogle Scholar
  242. Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11.  https://doi.org/10.1016/s0960-8524(01)00212-7 CrossRefGoogle Scholar
  243. Sweeney M, McCouch S (2007) The complex history of the domestication of rice. Ann Bot 100:951–957.  https://doi.org/10.1093/aob/mcm128 CrossRefGoogle Scholar
  244. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651.  https://doi.org/10.3390/ijms9091621 CrossRefGoogle Scholar
  245. Takata E, Tsuruoka T, Tsutsumi K, Tsutsumi Y, Tabata K (2014) Production of xylitol and tetrahydrofurfuryl alcohol from xylan in napier grass by a hydrothermal process with phosphorus oxoacids followed by aqueous phase hydrogenation. Bioresour Technol 167:74–80.  https://doi.org/10.1016/j.biortech.2014.05.112 CrossRefGoogle Scholar
  246. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018.  https://doi.org/10.1016/j.biortech.2005.01.016 CrossRefGoogle Scholar
  247. Thomas HL, Pot D, Latrille E, Trouche G, Bonnal L, Bastianelli D, Carrère H (2017) Sorghum biomethane potential varies with the genotype and the cultivation site. Waste Biomass Valoriz.  https://doi.org/10.1007/s12649-017-0099-3 CrossRefGoogle Scholar
  248. Thompson DN, Chen HC, Grethlein HE (1992) Comparison of pretreatment methods on the basis of available surface-area. Bioresour Technol 39:155–163.  https://doi.org/10.1016/0960-8524(92)90135-k CrossRefGoogle Scholar
  249. Tian J-H, Pourcher A-M, Bize A, Wazeri A, Peu P (2017) Impact of wet aerobic pretreatments on cellulose accessibility and bacterial communities in rape straw. Bioresour Technol 237:31–38CrossRefGoogle Scholar
  250. Tsubaki S, Azuma JI, Yoshimura T, Maitani MM, Suzuki E, Fujii S, Wada Y (2016) Chapter 5: microwave-induced biomass fractionation. In: Mussatto SI (ed) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Amsterdam, pp 103–126.  https://doi.org/10.1016/B978-0-12-802323-5.00005-0 CrossRefGoogle Scholar
  251. United States Environmental Protection Agency (2015) 2015 Announcements for renewable fuel standard. https://www.epa.gov/renewable-fuel-standard-program/2015-announcements-renewable-fuel-standard. Accessed 27 June 2018
  252. van der Weijde T, Kamei CLA, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:18.  https://doi.org/10.3389/fpls.2013.00107 CrossRefGoogle Scholar
  253. Varga E, Klinke HB, Reczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574.  https://doi.org/10.1002/bit.20222 CrossRefGoogle Scholar
  254. Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J Integr Plant Biol 53:105–119.  https://doi.org/10.1111/j.1744-7909.2010.01020.x CrossRefGoogle Scholar
  255. Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S142–S153.  https://doi.org/10.2135/cropsci2007.04.0013IPBS CrossRefGoogle Scholar
  256. Vijya C, Reddy RM (2012) Bio-delignification ability of locally available edible mushrooms for the biological treatment of crop residues. Indian J Biotechnol 11:191–196Google Scholar
  257. Vorobiev E, Lebovka N (2016) Chapter 7: applications of pulsed electric energy for biomass pretreatment in biorefinery. In: Mussatto SI (ed) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Amsterdam, pp 151–168.  https://doi.org/10.1016/B978-0-12-802323-5.00007-4 CrossRefGoogle Scholar
  258. Wang ZY, Keshwani DR, Redding AP, Cheng JJ (2010) Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresour Technol 101:3583–3585.  https://doi.org/10.1016/j.biortech.2009.12.097 CrossRefGoogle Scholar
  259. Wang QQ, He Z, Zhu Z, Zhang YHP, Ni Y, Luo XL, Zhu JY (2011) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Wiley Online Lib 109:381–389.  https://doi.org/10.1002/bit.23330 CrossRefGoogle Scholar
  260. Wertz JL, Bedue O (2013) Lignocellulosic biorefineries. EPFL Press, Lausanne, pp 1–521Google Scholar
  261. Xiao Z, Cheng C, Bao T, Liu L et al (2018) Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis. Biotechnol Biofuels 11:164.  https://doi.org/10.1186/s13068-018-1165-1 CrossRefGoogle Scholar
  262. Xie CL, Gong WB, Yang Q, Zhu ZH, Yan L, Hu ZX, Peng YD (2017) White-rot fungi pretreatment combined with alkaline/oxidative pretreatment to improve enzymatic saccharification of industrial hemp. Bioresour Technol 243:188–195.  https://doi.org/10.1016/j.biortech.2017.06.077 CrossRefGoogle Scholar
  263. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48:54–60.  https://doi.org/10.1016/j.enzmictec.2010.09.006 CrossRefGoogle Scholar
  264. Xu F, Sun RC, Sun JX, Liu CF, He BH, Fan JS (2005) Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal Chim Acta 552:207–217.  https://doi.org/10.1016/j.aca.2005.07.037 CrossRefGoogle Scholar
  265. Xu J, Chen HZ, Kadar Z, Thomsen AB, Schmidt JE, Peng HD (2011) Optimization of microwave pretreatment on wheat straw for ethanol production. Biomass Bioenergy 35:3859–3864.  https://doi.org/10.1016/j.biombioe.2011.04.054 CrossRefGoogle Scholar
  266. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–95.  https://doi.org/10.1002/bit.20043 CrossRefGoogle Scholar
  267. Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y et al (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11:325–335.  https://doi.org/10.1111/pbi.12016 CrossRefGoogle Scholar
  268. Yat SC, Berger A, Shonnard DR (2008) Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresour Technol 99:3855–3863.  https://doi.org/10.1016/j.biortech.2007.06.046 CrossRefGoogle Scholar
  269. Yin JZ, Hao LD, Yu W, Wang EJ, Zhao MJ, Xu QQ, Liu YF (2014) Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment. Chin J Catal 35:763–769.  https://doi.org/10.1016/s1872-2067(14)60040-1 CrossRefGoogle Scholar
  270. Yoo CG, Pu YQ, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11.  https://doi.org/10.1016/j.cogsc.2017.03.003 CrossRefGoogle Scholar
  271. Yu YL, Feng YJ, Xu C, Liu J, Li DM (2011) Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production. Bioresour Technol 102:5123–5128.  https://doi.org/10.1016/j.biortech.2011.01.067 CrossRefGoogle Scholar
  272. Zendehbad S, Mehran M, Malla S (2014) Flavonoids and phenolic content in wheat grass plant (Triticum aestivum). Asian J Pharmaceutical Clin Res 7:184–187Google Scholar
  273. Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyle D (2006) Ethanol production from supercritical-fluid-extrusion cooked sorghum. Ind Crops Prod 23:304–310.  https://doi.org/10.1016/j.indcrop.2005.09.001 CrossRefGoogle Scholar
  274. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824.  https://doi.org/10.1002/bit.20282 CrossRefGoogle Scholar
  275. Zhang HD, Wu SB (2014) Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse. Bioresour Technol 158:161–165.  https://doi.org/10.1016/j.biortech.2014.02.030 CrossRefGoogle Scholar
  276. Zhang B, He PJ, Ye NF, Shao LM (2008) Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes. Bioresour Technol 99:855–862.  https://doi.org/10.1016/j.biortech.2007.01.010 CrossRefGoogle Scholar
  277. Zhang YHP, Berson E, Sarkanen S, Dale BE (2009) Sessions 3 and 8: pretreatment and biomass recalcitrance: fundamentals and progress. Appl Biochem Biotechnol 153:80–83.  https://doi.org/10.1007/s12010-009-8610-3 CrossRefGoogle Scholar
  278. Zhang Y, Culhaoglu T, Pollet B, Melin C, Denoue D, Barrière Y et al (2011) Impact of lignin structure and cell wall reticulation on maize cell wall degradability. J Agric Food Chem 59:10129–10135.  https://doi.org/10.1021/jf2028279 CrossRefGoogle Scholar
  279. Zhang SJ, Keshwani DR, Xu YX, Hanna MA (2012) Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Ind Crops Prod 37:352–357.  https://doi.org/10.1016/j.indcrop.2011.12.001 CrossRefGoogle Scholar
  280. Zhang K, Johnson L, Prasad PVV, Pei ZJ, Yuan WQ, Wang DH (2015) Comparison of big bluestem with other native grasses: chemical composition and biofuel yield. Energy 83:358–365.  https://doi.org/10.1016/j.energy.2015.02.033 CrossRefGoogle Scholar
  281. Zhang HY, Chen LJ, Lu MS, Li JB, Han LJ (2016) A novel film-pore-surface diffusion model to explain the enhanced enzyme adsorption of corn stover pretreated by ultrafine grinding. Biotechnol Biofuels 9:12.  https://doi.org/10.1186/s13068-016-0602-2 CrossRefGoogle Scholar
  282. Zhang QG, Hu JJ, Lee DJ (2017) Pretreatment of biomass using ionic liquids: research updates. Renew Energy 111:77–84.  https://doi.org/10.1016/j.renene.2017.03.093 CrossRefGoogle Scholar
  283. Zhao XB, Wang L, Liu DH (2007) Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J Chem Technol Biotechnol 82:1115–1121.  https://doi.org/10.1002/jctb.1775 CrossRefGoogle Scholar
  284. Zhao XB, Zhang LH, Liu DH (2008) Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Bioresour Technol 99:3729–3736.  https://doi.org/10.1016/j.biortech.2007.07.016 CrossRefGoogle Scholar
  285. Zhao XB, Cheng KK, Liu DH (2009a) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827.  https://doi.org/10.1007/s00253-009-1883-1 CrossRefGoogle Scholar
  286. Zhao XB, Peng F, Cheng K, Liu DH (2009b) Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-peracetic acid pretreatment. Enzyme Microb Technol 44:17–23.  https://doi.org/10.1016/j.enzmictec.2008.07.011 CrossRefGoogle Scholar
  287. Zhao XB, Zhang LH, Liu DH (2012a) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefining 6:465–482.  https://doi.org/10.1002/bbb.1331 CrossRefGoogle Scholar
  288. Zhao YL, Liu XM, Wang JJ, Zhang SJ (2012b) Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. Chem Phys Chem 13:3126–3133.  https://doi.org/10.1002/cphc.201200286 CrossRefGoogle Scholar
  289. Zhao SG, Li GD, Zheng N, Wang JG, Yu ZT (2018) Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. Bioresour Technol 253:244–251.  https://doi.org/10.1016/j.biortech.2018.01.024 CrossRefGoogle Scholar
  290. Zheng J, Rehmann L (2014) Extrusion pretreatment of lignocellulosic biomass: a review. Int J Mol Sci 15:18967–18984.  https://doi.org/10.3390/ijms151018967 CrossRefGoogle Scholar
  291. Zheng Y, Zhang RH (2009) Lignocellulosic biomass pretreatment for bioethanol production. In: Erbaum JB (ed) Bioethanol: production, benefits and economics. Energy science engineering and technology. Nova Science Publishers Inc, Hauppauge, pp 1–48Google Scholar
  292. Zheng J, Choo K, Bradt C, Lehoux R, Rehmann L (2014) Enzymatic hydrolysis of steam exploded corncob residues after pretreatment in a twin-screw extruder. Biotechnol Rep 3:99–107.  https://doi.org/10.1016/j.btre.2014.06.008 CrossRefGoogle Scholar
  293. Zhu JY (2011) Physical pretreatment—woody biomass size reduction—for forest biorefinery. In: Zhu JJY, Zhang X, Pan XJ (eds) Sustainable production of fuels, chemicals, and fibers from forest biomass. ACS symposium series, vol 1067. American Chemical Society, Washington, pp 89–107CrossRefGoogle Scholar
  294. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002.  https://doi.org/10.1016/j.biortech.2009.11.007 CrossRefGoogle Scholar
  295. Zhu JY, Wang GS, Pan XJ, Gleisner R (2009) Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chem Eng Sci 64:474–485.  https://doi.org/10.1016/j.ces.2008.09.026 CrossRefGoogle Scholar
  296. Zhu JY, Pan XJ, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857.  https://doi.org/10.1007/s00253-010-2654-8 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.LBE, INRAUniv MontpellierNarbonneFrance
  2. 2.INRA Institut Jean-Pierre BourginVersaillesFrance

Personalised recommendations