Skip to main content
Log in

Biological coupling process for treatment of toxic and refractory compounds in coal gasification wastewater

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Coal gasification wastewater (CGW) contains a large number of toxic and refractory compounds, such as phenolic compounds and polycyclic and heterocyclic aromatic compounds. These toxic and refractory compounds are difficult to degrade if biological methods are the only ones used. In recent years, several novel biological coupling processes are used to treat CGW. In the study, this review attempts to offer a comprehensive summary regarding the biological coupling treatment technologies of CGW, including conventional biological processing arts, the combination of adsorption and biotechnology, biological enhancement technologies, co-metabolism technologies and the combination of advanced oxidation and biotechnology. Meanwhile, the treatment efficiency of different biological coupling processes was compared with each other. Co-metabolism and advanced oxidation with biotechnology are both highly effective and promising technologies for degrading toxic and refractory compounds. More research should be conducted on these two aspects in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reprinted with permission from reference Oberoi and Philip (2017)

Fig. 2

Reprinted with permission from reference Jia et al. (2016a)

Fig. 3

Reprinted with permission from reference Ghattas et al. (2017), Grossi et al. (2008) and Holmes et al. (2011)

Fig. 4

Reprinted with permission from reference Fang et al. (2013)

Fig. 5

Reprinted with permission from reference Jia et al. (2016b)

Fig. 6
Fig. 7

Reprinted with permission from reference Zhu et al. (2017a)

Fig. 8

Reprinted with permission from reference Zhu et al. (2017b)

Fig. 9

Reprinted with permission from reference Hou et al. (2015)

Fig. 10

Reprinted with permission from reference Hou et al. (2015)

Similar content being viewed by others

References

  • Aghapour AA, Moussavi G, Yaghmaeian K (2015) Degradation and COD removal of catechol in wastewater using the catalytic ozonation process combined with the cyclic rotating-bed biological reactor. J Environ Manag 157:262–266

    CAS  Google Scholar 

  • Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface 143:48–67

    CAS  Google Scholar 

  • Aivalioti M, Pothoulaki D, Papoulias P, Gidarakos E (2012) Removal of BTEX, MYBE and TAME from aqueous solutions by adsorption onto raw and thermally treated lignite. J Hazard Mater 207–208(6):136–146

    Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776

    Google Scholar 

  • Allenby B (2004) Clean production in context: an information infrastructure perspective. J Clean Prod 12:833–839

    Google Scholar 

  • Allenby B (2006) The ontologies on industrial ecology? Progress in industrial ecology. Annu Int J 3(1–2):28–40

    Google Scholar 

  • An H, Liu Z, Cao X, Teng J, Miao W, Liu J et al (2016) Mesoporous lignite-coke as an effective adsorbent for coal gasification wastewater treatment. Environ Sci Water Res Technol 3(1):169–174

    Google Scholar 

  • Anotai J, Lu M, Chewpreecha P (2006) Kinetics of aniline degradation by Fenton and electro-Fenton processes. Water Res 40:1841–1847

    CAS  Google Scholar 

  • Banerjee A, Ghoshal A (2010) Phenol degradation by Bacillus cereus: pathway and kinetic modeling. Bioresour Technol 101:5501–5507

    CAS  Google Scholar 

  • Blaskovicova M, Gaplovsky A, Blasko J (2007) Synthesis and photochemistry of 1-iodocyclohexene: influence of ultrasound on ionic vs. Radic Behav Mol 12:188–193

    CAS  Google Scholar 

  • Boix M, Montastruc L, Azzaro-Pantel C, Domenech S (2015) Optimization methods applied to the design of eco-industrial parks: a literature review. J Clean Prod 87:303–317

    Google Scholar 

  • Boll M, Loffler C, Morris BEL, Kung JW (2014) Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 16:612–627

    CAS  Google Scholar 

  • Bonting CF, Fuchs G (1996) Anaerobic metabolism of 2-hydroxybenzoic acid (salicylic acid) by a denitrifying bacterium. Arch Microbiol 165:402–408

    CAS  Google Scholar 

  • Borghei SM, Hosseini SH (2004) The treatment of phenolic wastewater using a moving bed biofilm reactor. Process Biochem 40(3):1027–1031

    Google Scholar 

  • Cansado I, Mourão P, Falcão A, Ribeiro M, Carrott P (2012) The influence of the activated carbon post-treatment on the phenolic compounds removal. Fuel Process Technol 103:64–70

    CAS  Google Scholar 

  • Chen G, Huang M, Chen Y, Chen L (2010) Anaerobic biodegradation of reactive black KN-B5. Environ Prot Chem Ind 30(03):192–195 (in Chinese)

    CAS  Google Scholar 

  • Cheng J, Suidan M, Venosa A (1998) Anaerobic biotransformation of 2,4-dinitrotoluene with ethanol, methanol, acetic acid and hydrogen as primary substrates. Water Res 32(10):2921–2930

    CAS  Google Scholar 

  • Chowdhary P, Raj A, Bharagava RN (2017) Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: a review. Chemosphere 194:229–246

    Google Scholar 

  • Dai Q, Wang J, Chen J, Chen J (2014) Ozonation catalyzed by cerium supported on activated carbon for the degradation of typical pharmaceutical wastewater. Sep Purif Technol 127:112–120

    CAS  Google Scholar 

  • Delgadillomirquez L, Lardon L, Steyer JP, Patureau D (2011) A new dynamic model for bioavailability and cometabolism of micropollutants during anaerobic digestion. Water Res 45(15):4511–4521

    CAS  Google Scholar 

  • Despeisse M, Ball PD, Evans S, Levers A (2012) Industrial ecology at factory level-a conceptual model. J Clean Prod 31:30–39

    Google Scholar 

  • Diamantis V, Aivasidis A (2007) Comparison of single-and two-stage UASB reactors used for anaerobic treatment of synthetic fruit wastewater. Enzyme Microb Technol 42:6–10

    CAS  Google Scholar 

  • Donaldson TL, Strandberg GW, Hewitt JD, Shields GS, Worden RM (2010) Biooxidation of coal gasification wastewaters using fluidized-bed bioreactors. Environ Prog 6:205–211

    Google Scholar 

  • Duan F, Yang Y, Li Y, Cao H, Wang Y, Zhang Y (2014) Heterogeneous Fenton-like degradation of 4-chlorophenol using iron/ordered mesoporous carbon catalyst. J Environ Sci 26:1171–1179

    CAS  Google Scholar 

  • Eker S, Kargi F (2010) COD, para-chlorophenol and toxicity removal from synthetic wastewater using rotating tubes biofilm reactor (RTBR). Bioresour Technol 101:9020–9024

    CAS  Google Scholar 

  • Elmolla ES, Chaudhuri M (2011) The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment. Desalination 272:218–224

    CAS  Google Scholar 

  • Fang F, Han H (2018) Effect of catalytic ozonation coupling with activated carbon adsorption on organic compounds removal treating RO concentrate from coal gasification wastewater. Ozone Sci Eng 40(4):275–283

    CAS  Google Scholar 

  • Fang F, Han H, Zhao Q, Xu C, Zhang L (2013) Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment. Bioresour Technol 150(3):314–320

    CAS  Google Scholar 

  • Fezzani B, Cheikh R (2010) Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour Technol 101:1628–1634

    CAS  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds- from one strategy to four. Nat Rev Microbiol 9:803–816

    CAS  Google Scholar 

  • Gai HJ, Jiang YB, Qian Y, Kraslawski A (2008) Conceptual design and retrofitting of the coal-gasification wastewater treatment process. Chem Eng J 138:1–3

    Google Scholar 

  • Ghattas AK, Fischer F, Wick A, Ternes T (2017) Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Res 116:268–295

    CAS  Google Scholar 

  • Giri RR, Ozaki H, Takanami R, Taniguchi S (2008) A novel use of TiO2 fiber for photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid in aqueous solution. J Environ Sci 20:1138–1145 (in Chinese)

    CAS  Google Scholar 

  • González-Martínez A, Calderón K, Albuquerque A, Hontoria E, González-López J, Guisado IM, Osorio F (2013) Biological and technical study of a partial-SHARON reactor at laboratory scale: effect of hydraulic retention time. Bioprocess Biosyst Eng 36:173–184

    Google Scholar 

  • Grossi Vincent, Cravo-Laureau Cristiana, Guyoneaud Rémy, Ranchou-Peyruse Anthony, Hirschler-Réa Agnès (2008) Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: a summary. Org Geochem 39:1197–1203

    CAS  Google Scholar 

  • Han H, Zhuang H (2013) Heterogeneous catalytic ozonation of cod and quinoline from coal gasification wastewater secondary effluent with carbon supported copper oxides as catalyst. Appl Mech Mater 316–317:379–382

    Google Scholar 

  • Hasan SW, Elektorowicz M, Oleszkiewicz JA (2012) Correlations between transmembrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR). Bioresour Technol 120:199–205

    CAS  Google Scholar 

  • Hellinga C, Schellen A, Mulder J, van Loosdrecht M, Heijnen J (1998) The SHARON process: an innovative method for nitrogen removal from ammonium-rich wastewater. Water Sci Technol 37(9):135–142

    CAS  Google Scholar 

  • Holmes DE, Risso C, Smith JA, Lovley DR (2011) Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol 77:5926–5933

    CAS  Google Scholar 

  • Hou B, Han H, Zhuang H, Xu P, Jia S, Li K (2015) A novel integration of three-dimensional electro-fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated lurgi coal gasification wastewater. Bioresour Technol 196:721–725

    CAS  Google Scholar 

  • Hsien TY, Lin YH (2006) Biodegradation of phenolic wastewater in a fixed biofilm reactor. Biochem Eng J 27(2):95–103

    Google Scholar 

  • Huang L, Gan L, Zhao Q, Logan B, Hong L, Chen G (2011) Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Bioresour Technol 102(19):8762–8768

    CAS  Google Scholar 

  • Hwang S, Jang K, Jang H, Song J, Bae W (2006) Factors affecting nitrous oxide production: a comparison of biological nitrogen removal processes with partial and complete nitrification. Biodegradation 17(1):19–29

    CAS  Google Scholar 

  • Ji Q, Tabassum S, Hena S, Silva CG, Yu G, Zhang Z (2016) A review on the coal gasification wastewater treatment technologies: past, present and future outlook. J Clean Prod 126:38–55

    CAS  Google Scholar 

  • Jia S, Han H, Hou B, Zhuang H, Fang F, Zhao Q (2015a) Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system. Chemosphere 117:753–759

    Google Scholar 

  • Jia S, Han H, Zhuang H, Peng X, Hou B (2015b) Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor. Bioresour Technol 189(4–5):918–921

    Google Scholar 

  • Jia S, Han H, Zhuang H, Hou B (2016a) The pollutants removal and bacterial community dynamics relationship within a full-scale british gas/lurgi coal gasification wastewater treatment using a novel system. Bioresour Technol 200:103–110

    CAS  Google Scholar 

  • Jia S, Han H, Zhuang H, Hou B (2016b) Bio-augmented submerged membrane bioreactor as an effective application for treatment of biologically pretreated coal gasification wastewater. J Chem Technol Biotechnol 91(5):1532–1539

    CAS  Google Scholar 

  • Jia S, Zhuang H, Han H, Wang F (2016c) Application of industrial ecology in water utilization of coal chemical industry: a case study in erdos, china. J Clean Prod 135:20–29

    CAS  Google Scholar 

  • Jiang B, Du C, Shi S, Tan L, Li M, Liu J, Xue L, Ji X (2017) Enhanced treatment performance of coking wastewater and reduced membrane fouling using a novel EMBR. Bioresour Technol 229:39–45

    CAS  Google Scholar 

  • Johir MA, Shanmuganathan S, Vigneswaran S, Kandasamy J (2013) Performance of submerged membrane bioreactor (SMBR) with and without the addition of the different particle sizes of GAC as suspended medium. Bioresour Technol 141(4):13–18

    CAS  Google Scholar 

  • Kargi F, Eker S (2005) Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochem 40(6):2105–2111

    CAS  Google Scholar 

  • Kasprzyk-Hordern B, Ziólek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B Environ 46:639–669

    CAS  Google Scholar 

  • Kindzierski W, Fedorak P, Hrudey S (1991) Anaerobic treatability of a phenolic coal conversion wastewater after diisopropyl ether extraction. Water Res 25(4):479–484

    CAS  Google Scholar 

  • Komonweeraket K, Cetin B, Aydilek AH, Craig H, Benson CH, Edil TB (2015) Effects of pH on the leaching mechanisms of elements from fly ash mixed soils. Fuel 140:788–802

    CAS  Google Scholar 

  • Kumabe K, Fujimoto S, Yanagida T, Ogata M, Fukuda T (2008) Environmental and economic analysis of methanol production process via biomass gasification. Fuel 87(7):1422–1427

    CAS  Google Scholar 

  • Kuschk P, Stottmeister U, Liu YJ, Wiessner A, Kästner M, Müller R (2010) Batch methanogenic fermentation experiments of wastewater from a brown coal low-temperature coke plant. J Environ Sci 22:192–197

    CAS  Google Scholar 

  • Lee HJ, Jeong SE, Kim PJ, Madsen EL, Jeon CO (2015) High resolution depth distribution of bacteria, archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy. Front Microbiol 6:639

    Google Scholar 

  • Li H, Han H (2014) Effect of recycle ratio on performance of pre-denitrification moving bed biofilm reactors in treating coal gasification wastewater. Desalin Water Treat 52(37–39):6894–6903

    CAS  Google Scholar 

  • Li H, Yang Q, Shang H (2004) Study on anaerobic biodegradation of tetrachloroethylene with different co-metabolism substrates. Environ Pollut Control 26(5):326–328 (in Chinese)

    CAS  Google Scholar 

  • Li JF,Wu J, Sun HF, Cheng FQ, Liu Y (2016) Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation. Desalination 380:43–51

    CAS  Google Scholar 

  • Lianqin Y, Jun Z, Jilin T, Ruozhen L, Wanqian Y (2011) Adsorption advanced treatment for coal gas biochemical wastewater. Technol Water Treat 37:104–106

    Google Scholar 

  • Licht D, Ahring BK, Arvin E (1996) Effects of electron acceptors, reducing agents, and toxic metabolites on anaerobic degradation of heterocyclic compounds. Biodegradation 7:83–90

    CAS  Google Scholar 

  • Lili X, Shuo S, Jun W, Deyin H, Zhaokun L (2013) Impact of activated coke adsorption on membrane treatment process of coke plant wastewater. Chin J Environ Eng 7:3827–3832

    Google Scholar 

  • Lin S, Juang R (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J Environ Manag 90:1336–1349

    CAS  Google Scholar 

  • Liu H, Hu C, Zhao H, Qu J (2009) Coagulation of humic acid by pacl with high content of Al13: the role of aluminum speciation. Sep Purif Technol 70(2):225–230

    CAS  Google Scholar 

  • Liu YS, Han HJ, Fang F (2013) Application of bioaugmentation to improve the long-chain alkanes removal efficiency in CCIW. Fresenius Environ Bull 22:2448–2455

    CAS  Google Scholar 

  • Liu Q, Singh VP, Fu Z, Wang J, Hu (2017) An anoxic-aerobic system for simultaneous biodegradation of phenol and ammonia in a sequencing batch reactor. Environ Sci Pollut Res Int 24(12):11789–11799

    CAS  Google Scholar 

  • Luthy RG, Stamoudis VC, Campbell JR, Harrison W (1983) Removal of organic contaminants from coal conversion process condensates. J Water Pollut Control Fed 55(2):196–207

    CAS  Google Scholar 

  • Ma M, Jing DW (2009) Research on immersed UF-RO combined technological processes of recycling coal-gasification wastewater. J Tianjin Inst Urban Constr 15:280–284

    Google Scholar 

  • Ma J, Sui M, Zhang T, Guan C (2005) Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene. Water Res 39(5):779–786

    CAS  Google Scholar 

  • Ma Q, Qu YY, Shen WL, Zhang ZJ, Wang JW, Liu ZR, Li DX, Li HJ, Zhou JT (2015) Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour Technol 179:436–443

    CAS  Google Scholar 

  • Ma W, Han Y, Xu C, Han H, Ma W, Zhu H, Li K, Wang DX (2018) Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition. Bioresour Technol 251:303–310

    CAS  Google Scholar 

  • Mao YJ, Zhang XJ, Xia X, Zhong HH, Zhao LP (2010) Versatile aromatic compound-degrading capacity and microdiversity of Thauera strains isolated from a coking wastewater treatment bioreactor. J Ind Microbiol Biotechnol 37:927–934

    CAS  Google Scholar 

  • Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414

    CAS  Google Scholar 

  • Melcer H, Nutt SG (1985) The application of predenitrification nitrification technology for trace contaminant control. Water Sci Technol 17(2–3):399–408

    CAS  Google Scholar 

  • Mizera J, Mizerová G, Machovic V, Borecká L (2007) Sorption of cesium, cobalt and europium on low-rank coal and chitosan. Water Res 41(3):620–626

    CAS  Google Scholar 

  • Moussavi G, Aghapour AA, Yaghmaeian K (2014) The degradation and mineralization of catechol using ozonation catalyzed with MgO/GAC composite in a fluidized bed reactor. Chem Eng J 249:302–310

    CAS  Google Scholar 

  • Nakhla GF, Suidan MT (1995) Anaerobic toxic wastes treatment: dilution effects. J Hazard Mater 42:71–86 

    CAS  Google Scholar 

  • Narmandakh A, Gad’On N, Drepper F, Knapp B, Haehnel W, Fuchs G (2006) Phosphorylation of phenol by phenylphosphate synthase: role of histidine phosphate in catalysis. J Bacteriol 188:7815–7822

    CAS  Google Scholar 

  • O’connor O, Young L (1996) Effects of six different functional groups and their position on the bacterial metabolism of monosubstituted phenols under anaerobic conditions. Environ Sci Technol 30:1419–1428

    Google Scholar 

  • Oberoi AS, Philip L (2017) Performance evaluation of attached biofilm reactors for the treatment of wastewater contaminated with aromatic hydrocarbons and phenolic compounds. J Environ Chem Eng 5(4):3852–3864

    CAS  Google Scholar 

  • Oller I, Malato S, Sanchez-Perez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci Total Environ 409:4141–4166

    CAS  Google Scholar 

  • Oz NA, Uzun AC (2015) Ultrasound pretreatment for enhanced biogas production from olive mill wastewater. Ultrason Sonochem 22:565–572

    CAS  Google Scholar 

  • Pan LY, Liu P, Ma LW, Li Z (2012) A supply chain based assessment of water issues in the coal industry in China. Energy Policy 48(2012):93–102

    Google Scholar 

  • Perez M, Rodriguez-Cano R, Romero L, Sales D (2006) Anaerobic thermophilic digestion of cutting oil wastewater: effect of co-substrate. Biochem Eng J 29(3):250–257

    CAS  Google Scholar 

  • Philipp B, Schink B (2012) Different strategies in anaerobic biodegradation of aromatic compounds: nitrate reducers versus strict anaerobes. Environ Microbiol Rep 4:469–478

    CAS  Google Scholar 

  • Polymenakou PN, Stephanou EG (2005) Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad. Biodegradation 16:403–413

    CAS  Google Scholar 

  • Quan X, Shi H, Liu H, Lv P, Qian Y (2004) Enhancement of 2,4-dichlorophenol degradation in conventional activated sludge systems bioaugmented with mixed special culture. Water Res 38:245–253

    CAS  Google Scholar 

  • Quan X, Yang Z, Shi H (2005) The effect of a secondary chlorophenol presence on the removal of 2,4-dichlorophenol (2,4-DCP) in an activated sludge system bioaugmented with 2,4-DCP degrading special culture. Process Biochem 40:3462–3467

    CAS  Google Scholar 

  • Ramakrishnan A, Gupta S (2006) Anaerobic biogranulation in a hybrid reactor treating phenolic waste. J Hazard Mater 137(3):1488–1495

    CAS  Google Scholar 

  • Rava E, Chirwa E (2016) Effect of carrier fill ratio on biofilm properties and performance of a hybrid fixed-film bioreactor treating coal gasification wastewater for the removal of COD, phenols and ammonia–nitrogen. Water Sci Technol 73:2461–2467

    CAS  Google Scholar 

  • Redding AM, Cannon FS, Snyder SA, Vanderford BJ (2009) A qsar-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons. Water Res 43(15):3849–3861

    CAS  Google Scholar 

  • Remya N, Lin J (2011) Current status of microwave application in wastewater treatment-a review. Chem Eng J 166:797–813

    CAS  Google Scholar 

  • Safinowski M, Griebler C, Meckenstock RU (2006) Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies. Environ Sci Technol 40(13):4165–4173

    CAS  Google Scholar 

  • Satyawali Y, Balakrishnan M (2009) Effect of PAC addition on sludge properties in an MBR treating high strength wastewater. Water Res 43:1577–1588

    CAS  Google Scholar 

  • Schmeling S, Narmandakh A, Schmitt O, Gad'On N, Schühle K, Fuchs G (2004) Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186:8044–8057

    CAS  Google Scholar 

  • Schühle K, Fuchs G (2004) Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186:4556–4567

    Google Scholar 

  • Su Y, Wang J, Zhou J (2008) Enhanced biodecolourization of azo dyes by the catalysis of anthraquinone dyes intermediators. Environ Sci 136(7):S484–S484

    Google Scholar 

  • Suidan MT, Siekerka GL, Kao SW, Pfeffer JT (1983) Anaerobic filters for the treatment of coal gasification wastewater. Biotechnol Bioeng 25:1581–1596

    CAS  Google Scholar 

  • Sundstrom D, Klei H, Tsui T, Nayar S (1979) Response of biological reactors to the addition of powdered activated carbon. Water Res 13:1225–1231

    CAS  Google Scholar 

  • Tao L, Mao Y, Shi Y, Xie Q (2017) Start-up and bacterial community compositions of partial nitrification in moving bed biofilm reactor. Appl Microbiol Biotechnol 101:2563–2574

    Google Scholar 

  • Tong L, Guo S, Zhou XS (2010) Conditionality of wastewater zero discharge in coal chemical industry. Environ Protect Coal Chem 30:371–374 (in Chinese)

    CAS  Google Scholar 

  • Tu Y, Tian S, Kong L, Xiong Y (2012) Co-catalytic effect of sewage sludge-derived char as the support of Fenton-like catalyst. Chem Eng J 185&186:44–51

    Google Scholar 

  • Vassileva P, Tzvetkova P, Nickolov R (2009) Removal of ammonium ions from aqueous solutions with coal-based activated carbons modified by oxidation. Fuel 88(2):387–390

    CAS  Google Scholar 

  • Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123

    CAS  Google Scholar 

  • Wang W, Han H (2012) Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater. Bioresour Technol 103:95–100

    CAS  Google Scholar 

  • Wang W, Han H, Min Y (2010) Enhanced anaerobic biodegradability of real coal gasification wastewater with methanol addition. J Environ Sci 22(12):1868–1874

    CAS  Google Scholar 

  • Wang W, Han H, Yuan M, Li H, Fang F, Wang K (2011a) Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for cod and phenols removal. Bioresour Technol 102(9):5454–5460

    CAS  Google Scholar 

  • Wang W, Ma W, Han H, Li H, Yuan M (2011b) Thermophilic anaerobic digestion of lurgi coal gasification wastewater in a UASB reactor. Bioresour Technol 102(3):2441–2447

    CAS  Google Scholar 

  • Wang X, Mei L, Xing X, Liao L, Lv G, Li Z, Wu L (2014) Mechanism and process of methylene blue degradation by manganese oxides under microwave irradiation. Appl Catal B Environ s160–s161:211–216

    Google Scholar 

  • Wang ZP, Liu LL, Guo F, Zhang T (2015) Deciphering cyanide-degrading potential of bacterial community associated with the coking wastewater treatment plant with a novel draft genome. Microb Ecol 70:1–9

    CAS  Google Scholar 

  • Weathers LJ, And GFP, Alvarez PJ (1997) Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture. Environ Sci Technol 31(3):880–885

    CAS  Google Scholar 

  • Wei W, Han H, Min Y, Li H (2010) Enhanced anaerobic biodegradability of real coal gasification wastewater with methanol addition. J Environ Sci 22(12):1868–1874 (in Chinese)

    Google Scholar 

  • Widjaja T, Miyata T, Nakano Y, Nishijima W, Okada M (2004) Adsorption capacity of powdered activated carbon for 3, 5-dichlorophenol in activated sludge. Chemosphere 57:1219–1224

    CAS  Google Scholar 

  • Xie K, Li WY, Zhao W (2010) Coal chemical industry and its sustainable development in China. Energy 35:4349–4355

    CAS  Google Scholar 

  • Xu P, Han HJ, Jia SY, Hou BL, Zhao Q (2013) Treatment phenolic compounds in coal gasification wastewater by hydrolytic acidification-AO process. Adv Mater Res 807–809:1083–1086

    Google Scholar 

  • Xu P, Han H, Hou B, Jia S, Zhao Q (2015a) Treatment of coal gasification wastewater by a two-phase anaerobic digestion. Desalin Water Treat 54(3):598–608

    CAS  Google Scholar 

  • Xu P, Han H, Hou B, Zhuang H, Jia S, Wang D, Li Q, Zhao Q (2015b) The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater. Bioresour Technol 189:417–420

    CAS  Google Scholar 

  • Xu P, Han H, Zhuang H, Hou B, Jia S, Xu C, Wang D (2015c) Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process. Bioresour Technol 182:389–392

    CAS  Google Scholar 

  • Xu P, Ma W, Hou B, Shi Z (2016) A novel integration of microwave catalytic oxidation and mbr process and its application in advanced treatment of biologically pretreated lurgi coal gasification wastewater. Sep Purif Technol 177:233–238

    Google Scholar 

  • Xu P, Xu H, Han HJ (2018) Treatment coal gasification wastewater by combined biological system. Fresenius Environ Bull 27(4):2286–2289

    Google Scholar 

  • Yalou G, Jiang Q, Shengmin L (2010) The choice of coagulant agents on the treatment of coal gasification wastewater. Coal Chem Ind 2:43–46

    Google Scholar 

  • Yin C, Cai J, Gao L, Yin J, Zhou J (2016) Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method. J Hazard Mater 305:15–20

    CAS  Google Scholar 

  • Youngster L, Somsamak P, Haggblom M (2008) Effects of co-substrates and inhibitors on the anaerobic O-demethylation of methyl tert-butyl ether (MTBE). Appl Microbiol Biotechnol 80(6):1113–1120

    CAS  Google Scholar 

  • Zhang W, Ma J, Yang S, Zhang T, Li Y (2006) Pretreatment of coal gasification wastewater by acidification demulsion. Chin J Chem Eng 14:398–401

    CAS  Google Scholar 

  • Zhang B, He P, Lu F, Shao L (2008) Enhancement of anaerobic biodegradability of flower stem wastes with vegetable wastes by co-hydrolysis. J Environ Sci 20(3):297–303

    CAS  Google Scholar 

  • Zhao Q, Liu Y (2016) State of the art of biological processes for coal gasification wastewater treatment. Biotechnol Adv 34(5):1064–1072

    CAS  Google Scholar 

  • Zhao Q, Han H, Xu C, Zhuang H, Fang F, Zhang L (2013) Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater. Bioresour Technol 142(4):179–185

    CAS  Google Scholar 

  • Zhao Q, Han H, Hou B, Zhuang H, Jia S, Fang F (2014) Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process. J Environ Sci 26(11):2231–2239 (in Chinese)

    Google Scholar 

  • Zhou L, Ren XK, Zhang XL (2012) Policies for coal-to-liquids industry in China. Chem Ind Eng Prog 31(10):2207–2212 (in Chinese)

    Google Scholar 

  • Zhou H, Li H, Wan J, Rong Y, Yu X, Li H, Chen J, Wang L, Lu X (2016) Microwave-enhanced catalytic degradation of p-nitrophenol in soil using MgFe2O4. Chem Eng J 284:54–60

    CAS  Google Scholar 

  • Zhu H, Han Y, Ma W, Han H, Ma W (2017a) Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR). Bioresour Technol 245:786–793

    CAS  Google Scholar 

  • Zhu H, Ma W, Han H, Han Y, Ma W (2017b) Catalytic ozonation of quinoline using nano-MgO: efficacy, pathways, mechanisms and its application to real biologically pretreated coal gasification wastewater. Chem Eng J 327:92–99

    Google Scholar 

  • Zhu H, Han YX, Ma WC, Han HJ, Ma WW, Xu CY (2018) New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene. Bioresour Technol 262:302–309

    CAS  Google Scholar 

  • Zhuang H, Han H, Hou B, Jia S, Zhao Q (2014a) Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts. Bioresour Technol 166(8):178–186

    CAS  Google Scholar 

  • Zhuang H, Han H, Jia S, Hou B, Qian Z (2014b) Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process. Bioresour Technol 166(7):592–595

    CAS  Google Scholar 

  • Zhuang H, Han H, Jia S, Zhao Q, Hou B (2014c) Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system. Bioresour Technol 157(4):223–230

    CAS  Google Scholar 

  • Zhuang H, Hong X, Han H, Shan S (2016a) Effect of pure oxygen fine bubbles on the organic matter removal and bacterial community evolution treating coal gasification wastewater by membrane bioreactor. Bioresour Technol 221(9):262–269

    CAS  Google Scholar 

  • Zhuang H, Han H, Shan S (2016b) Treatment of british gas/lurgi coal gasification wastewater using a novel integration of heterogeneous fenton oxidation on coal fly ash/sewage sludge carbon composite and anaerobic biological process. Fuel 178:155–162

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National key research and development program-China (2017YFB0602804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Han, Y., Xu, C. et al. Biological coupling process for treatment of toxic and refractory compounds in coal gasification wastewater. Rev Environ Sci Biotechnol 17, 765–790 (2018). https://doi.org/10.1007/s11157-018-9481-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-018-9481-2

Keywords

Navigation