Advertisement

Reviews in Environmental Science and Bio/Technology

, Volume 17, Issue 3, pp 553–570 | Cite as

Evaluation of the potential of cassava-based residues for biofuels production

  • Selvaraju Sivamani
  • Arun Pandian Chandrasekaran
  • Muthusamy Balajii
  • Muthusamy Shanmugaprakash
  • Ahmad Hosseini-Bandegharaei
  • Rajoo Baskar
review paper
  • 31 Downloads

Abstract

Cassava is the third significant source of calories after rice and maize in tropical countries. The annual production of cassava crop is approximately 550 million metric tons (MMT) which generates about 350 MMT of cassava solid residues, including peel, bagasse, stem, rhizome, and leaves. Cassava peel, bagasse, stem, and rhizome can be exploited for solid, liquid and gaseous biofuels production. Biofuels production from cassava starch started in the 1970s and researchers are now extensively studying cassava residues like peel, bagasse, stem, rhizome, and leaves to unravel their applications in biofuels production. However, there are technical and economic challenges to overcome the problems existing in the production of biofuels from cassava-based residues. This review provides a comprehensive summary of the techniques used for biofuels production from various cassava-based residues.

Keywords

Cassava residues Biochar Bioethanol Bio-oil Biogas 

References

  1. Abidin Z, Saraswati E, Naid T (2014) Bioethanol production from waste of the cassava peel (Manihot esculenta) by acid hydrolysis and fermentation process. Int J PharmTech Res 6:1209–1212Google Scholar
  2. Adelekan BA, Bamgboye AI (2009) Comparison of biogas productivity of cassava peels mixed in selected ratios with major livestock waste types. Afr J Agric Res 4:571–577Google Scholar
  3. Adesanya OA, Oluyemi KA, Josiah SJ et al (2008) Ethanol production by Saccharomyces cerevisiae from cassava peel hydrolysate. Internet J Microbiol 5:25–35Google Scholar
  4. Adetunji OR, Youdeowei PK, Kolawole OO (2015) Production of bioethanol from cassava peel. In: Proceedings from international conference on renewable energy and power held at Atlanta, GeorgiaGoogle Scholar
  5. Adeyanju AA (2008) Effect of seeding of wood-ash on biogas production using pig waste and cassava peels. J Eng Appl Sci 3:242–245Google Scholar
  6. Adiotomre KO (2015) Production of bioethanol as an alternative source of fuel using cassava and yam peels as raw materials. Int J Innov Res Sci Eng Technol 3:28–44Google Scholar
  7. Akponah E, Akpomie OO (2011) Analysis of the suitability of yam, potato and cassava root peels for bioethanol production using Saccharomyces cerevisiae. Int Res J Microbiol 2:393–398Google Scholar
  8. Alves AAC (2002) Cassava botany and physiology. Cassava Biol Prod Util.  https://doi.org/10.1079/9780851995243.0067 Google Scholar
  9. Anbuselvi S, Balamurugan T (2013) Study on ethanol production from cassava leaves and pulp using S. cerevisiae. Res J Pharm Biol Chem Sci 4:1755–1761Google Scholar
  10. Asikong BE, Epoke J, Eja EM, Antai EE (2012) Potentials of biogas generation by combination of cassava peels (CP) and poultry droppings (PD) in cross river state—Nigeria. Niger J Microbiol 26:2543–2552Google Scholar
  11. Banerjee S, Mudliar S, Sen R et al (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefining 4:77–93.  https://doi.org/10.1002/bbb Google Scholar
  12. Bansal P (2005) Evolving sustainably: a longitudinal study of corporate sustainable development. Strateg Manag J 26:197–218.  https://doi.org/10.1002/smj.441 Google Scholar
  13. Berndes G, Hoogwijk M, Van Den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28.  https://doi.org/10.1016/S0961-9534(02)00185-X Google Scholar
  14. Bhardwaj AK, Zenone T, Chen J (eds) (2015) Sustainable biofuels an ecological assessment of future energy. Walter Gruyter GmbH Co KG, BerlinGoogle Scholar
  15. Casson A, Muliastra YIKD, Obidzinski K (2014) Large-scale plantations, bioenergy developments and land use change in Indonesia. CIFOR Working Paper No. 170. CIFOR 170.  https://doi.org/10.17528/cifor/005434
  16. Castaño Peláez H, Reales Alfaro J, Zapata Montoya J (2013) Simultaneous saccharification and fermentation of cassava stems. Dyna 80:97–104Google Scholar
  17. Chibuzor O, Uyoh EA, Igile G (2016) Bioethanol production from cassava peels using different microbial inoculants. Afr J Biotechnol 15:1608–1612.  https://doi.org/10.5897/AJB2016.15391 Google Scholar
  18. Cock JH (1982) Cassava: a basic energy source in the tropics. Science 218:755–762.  https://doi.org/10.1126/science.7134971 Google Scholar
  19. Cuzin N, Labat M (1992) Reduction of cyanide levels during anaerobic digestion of cassava. Int J Food Sci Technol 27:329–336.  https://doi.org/10.1111/j.1365-2621.1992.tb02034.x Google Scholar
  20. Cuzin N, Farinet JL, Segretain C, Labat M (1992) Methanogenic fermentation of cassava peel using a pilot plug flow digester. Bioresour Technol 41:259–264.  https://doi.org/10.1016/0960-8524(92)90011-L Google Scholar
  21. Cuzin N, Ouattara AS, Labat M, Garcia JL (2001) Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. Int J Syst Evol Microbiol 51:489–493.  https://doi.org/10.1099/00207713-51-2-489 Google Scholar
  22. Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31:171–192.  https://doi.org/10.1016/j.pecs.2005.02.002 Google Scholar
  23. Dineshkumar R, Dash SK, Sen R (2015) Process integration for microalgal lutein and biodiesel production with concomitant flue gas CO2 sequestration: a biorefinery model for healthcare, energy and environment. RSC Adv 5:73381–73394.  https://doi.org/10.1039/C5RA09306F Google Scholar
  24. Djuma’ali DA, Sumarno SN et al (2011) Cassava pulp as a biofuel feedstock of an enzymatic hydrolysis process. Makara Tecknologi 15:183–192.  https://doi.org/10.7454/mst.v15i2.938 Google Scholar
  25. Edama NA, Sulaiman A, Abd.Rahim NS (2014) Enzymatic saccharification of Tapioca processing wastes into biosugars through immobilization technology. Biofuel Res J 1:2–6.  https://doi.org/10.18331/BRJ2015.1.1.3 Google Scholar
  26. El-Sharkawy MA (2003) Cassava biology and physiology. Plant Mol Biol 53:621–641.  https://doi.org/10.1007/s11103-005-2270-7 Google Scholar
  27. Ezebuiro V, Ogugbue CJ, Oruwari B, Ire FS (2015) Bioethanol production by an ethanol-tolerant Bacillus cereus strain GBPS9 using sugarcane bagasse and cassava peels as feedstocks. J Biotechnol Biomater.  https://doi.org/10.4172/2155-952X.1000213 Google Scholar
  28. Ezekoye VA, Ezekoye BA (2009) Characterization and storage of biogas produced from the anaerobic digestion of cow dung, spent grains/cow dung, and cassava peels/rice husk. Pacific J Sci Technol 10:898–904Google Scholar
  29. Ezekoye VA, Ezekoye BA, Offor PO (2011) Effect of retention time on biogas production from poultry droppings and cassava peels. Niger J Biotechnol 22:53–59Google Scholar
  30. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810.  https://doi.org/10.1126/science.1137013 Google Scholar
  31. Han M, Kim Y, Kim Y et al (2011) Bioethanol production from optimized pretreatment of cassava stem. Korean J Chem Eng 28:119–125.  https://doi.org/10.1007/s11814-010-0330-4 Google Scholar
  32. Hermiati E, Azuma J, Mangunwidjaja D et al (2011) Hydrolysis of carbohydrates in cassava pulp and tapioca flour under microwave irradiation. Indones J Chem 11:238–245Google Scholar
  33. Jekayinfa SO, Scholz V (2013) Laboratory scale preparation of biogas from cassava tubers, cassava peels, and palm kernel oil residues. Energy Sources Part A Recover Util Environ Eff 35:2022–2032.  https://doi.org/10.1080/15567036.2010.532190 Google Scholar
  34. Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498:61–66.  https://doi.org/10.1016/j.tca.2009.10.003 Google Scholar
  35. Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218.  https://doi.org/10.1016/j.pbi.2003.12.001 Google Scholar
  36. Johnson R, Padmaja G (2011) Utilization of cassava fibrous residue for the production of glucose and high fructose syrup. Ind Biotechnol 7:448–455.  https://doi.org/10.1089/ind.2011.0015 Google Scholar
  37. Kalakul S, Malakul P, Siemanond K, Gani R (2014) Integration of life cycle assessment software with tools for economic and sustainability analyses and process simulation for sustainable process design. J Clean Prod 71:98–109.  https://doi.org/10.1016/j.jclepro.2014.01.022 Google Scholar
  38. Ki OL, Kurniawan A, Lin CX et al (2013) Bio-oil from cassava peel: a potential renewable energy source. Bioresour Technol 145:157–161.  https://doi.org/10.1016/j.biortech.2013.01.122 Google Scholar
  39. Klinpratoom B, Ontanee A, Ruangviriyachai C (2015) Improvement of cassava stem hydrolysis by two-stage chemical pretreatment for high yield cellulosic ethanol production. Korean J Chem Eng 32:413–423.  https://doi.org/10.1007/s11814-014-0235-8 Google Scholar
  40. Kongkiattikajorn J (2013) Production of glucoamylase from Saccharomycopsis fibuligera sp. and hydrolysis of cassava peels for alcohol production. Int J Comput Internet Manag 21:1–7Google Scholar
  41. Kongkiattikajorn J, Sornvoraweat B (2011) Comparative study of bioethanol production from cassava peels by monoculture and co-culture of yeast. Kasetsart J Nat Sci 45:268–274Google Scholar
  42. Kouteu Nanssou PA, Jiokap Nono Y, Kapseu C (2016) Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process. Renew Energy 97:252–265.  https://doi.org/10.1016/j.renene.2016.05.050 Google Scholar
  43. Laohalidanond K, Heil J, Wirtgen C (2006) The production of synthetic diesel from biomass. KMITL Sci Technol 6:35–45Google Scholar
  44. Larsson S, Lockneus O, Xiong S, Samuelsson R (2015) Cassava stem powder as an additive in biomass fuel pellet production. Energy Fuels 29:5902–5908.  https://doi.org/10.1021/acs.energyfuels.5b01418 Google Scholar
  45. Li S, Cui Y, Zhou Y et al (2017) The industrial applications of cassava: current status, opportunities and prospects. J Sci Food Agric.  https://doi.org/10.1002/jsfa.8287 Google Scholar
  46. Lund H (2007) Renewable energy strategies for sustainable development. Energy 32:912–919.  https://doi.org/10.1016/j.energy.2006.10.017 Google Scholar
  47. Magesh A, Preetha B, Viruthagiri T (2011a) Simultaneous Saccharification and fermentation of tapioca stem var. 226 white rose to ethanol by cellulase enzyme and Saccharomyces cerevisiae. Int J ChemTech Res 3:1821–1829Google Scholar
  48. Magesh A, Preetha B, Viruthagiri T (2011b) Statistical optimization of process variables for direct fermentation of 226 white rose tapioca stem to ethanol by Fusarium oxysporum. Int J Chem Mol Nucl Mater Metall Eng 5:226–231Google Scholar
  49. Mangnimit S, Malakul P, Gani R (2013) Sustainable process design of biofuels: bioethanol production from cassava rhizome. In: Proceedings of the 6th international conference on process systems engineering (PSE ASIA) vol 25, pp 1–6Google Scholar
  50. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46.  https://doi.org/10.1016/S0960-8524(01)00118-3 Google Scholar
  51. Moshi AP, Temu SG, Nges IA et al (2015) Combined production of bioethanol and biogas from peels of wild cassava Manihot glaziovii. Chem Eng J 279:297–306.  https://doi.org/10.1016/j.cej.2015.05.006 Google Scholar
  52. Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol (Méndez-Vilas, A, Ed) 2:897–907.  https://doi.org/10.1016/j.jrras.2014.02.003 Google Scholar
  53. Nassar NMA (2007) Wild and indigenous cassava, Manihot esculenta Crantz diversity: an untapped genetic resource. Genet Resour Crop Evol 54:1523–1530.  https://doi.org/10.1007/s10722-006-9144-y Google Scholar
  54. Nguyen QA, Yang J, Bae HJ (2017) Bioethanol production from individual and mixed agricultural biomass residues. Ind Crops Prod 95:718–725.  https://doi.org/10.1016/j.indcrop.2016.11.040 Google Scholar
  55. Nigam PSN, Pandey A (eds) (2009) Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer Science & Business MediaGoogle Scholar
  56. Nkodi TM, Taba KM, Kayembe S et al (2016) Biogas production by co-digestion of cassava peels with urea. Int J Sci Eng Technol 55:139–141Google Scholar
  57. Nnabuchi MN, Ukpai PA (2012) Comparative study of biogas production from cow dung, cow pea and cassava peeling using 45 l biogas digester. Prime Res Med 2:89–93Google Scholar
  58. Noor NM, Shariff A, Abdullah N (2012) Slow pyrolysis of cassava wastes for biochar production and characterization. Iran J Energy Environ 3:60–65.  https://doi.org/10.5829/idosi.ijee.2012.03.05.10 Google Scholar
  59. Nurse K (2006) Culture as the fourth pillar of sustainable development. Small States Econ Rev Basic Stat 11:28–40.  https://doi.org/10.1177/026327690007002004 Google Scholar
  60. Nuwamanya E, Chiwona-karltun L, Kawuki RS, Baguma Y (2012) Bio-ethanol production from non-food parts of CASSAVA (Manihot esculenta Crantz). Ambio 41:262–270.  https://doi.org/10.1007/s13280-011-0183-z Google Scholar
  61. Ofoefule AU, Uzodinma EO (2009) Biogas production from blends of cassava (Manihot utilissima) peels with some animal wastes. Int J Phys Sci 4(1):Ofoef:398–Ofoef:402Google Scholar
  62. Okareh OT, Adeolu AT, Shittu OI (2012) Enrichment of pig dung with selected crop wastes for the production of biogas. Int J Microbiol 3:258–263Google Scholar
  63. Okekunle PO, Itabiyi OE, Adetola SO et al (2016) Biofuel production by pyrolysis of cassava peel in a fixed bed reactor. Int J Energy Clean Environ 17:57–65Google Scholar
  64. Oparaku NF, Ofomatah AC, Okoroigwe EC (2013) Biodigestion of cassava peels blended with pig dung for methane generation. Afr J Biotechnol 12:5956–5961.  https://doi.org/10.5897/AJB2013.12938 Google Scholar
  65. Orhorhoro OW, Orhorhoro EK, Ebunilo PO (2016) Analysis of the effect of carbon/nitrogen (C/N) ratio on the performance of biogas yields for non-uniform multiple feed stock availability and composition in Nigeria. Int J Innov Sci Eng Technol 3:119–126Google Scholar
  66. Oyeleke SB, Dauda BEN, Oyewole OA, Okoliegbe IN, Ojebode T (2012) Production of bioethanol from cassava and sweet potato peels. Adv Environ Biol 6:241–245Google Scholar
  67. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84.  https://doi.org/10.1016/S1369-703X(02)00121-3 Google Scholar
  68. Pandey A (2004) Concise encyclopedia of bioresource technology (No. C/620.803 C6). New York: Food Products PressGoogle Scholar
  69. Pandey A, Soccol CR (2000) Economic utilization of crop residues for value addition: a futuristic approach. J Sci Ind Res 59:12–22Google Scholar
  70. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80.  https://doi.org/10.1016/S0960-8524(99)00142-X Google Scholar
  71. Pandian CA, Suganya C, Sivamani S, Baskar R (2016) Saccharification and single step fermentation of cassava peel by mixed culture of Saccharomycopsis fibuligera NCIM 3161 and Zymomonas mobilis MTCC 92. Am J Biomass Bioenergy 5:57–64.  https://doi.org/10.7726/ajbb.2016.1005 Google Scholar
  72. Patle S, Lal B (2008) Investigation of the potential of agro-industrial material as low-cost substrate for ethanol production by using Candida tropicalis and Zymomonas mobilis. Biomass Bioenergy 32:596–602.  https://doi.org/10.1016/j.biombioe.2007.12.008 Google Scholar
  73. Pattiya A (2011a) Thermochemical characterization of agricultural wastes from thai cassava plantations. Energy Sources Part A Recover Util Environ Eff 33:691–701.  https://doi.org/10.1080/15567030903228922 Google Scholar
  74. Pattiya A (2011b) Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor. Bioresour Technol 102:1959–1967.  https://doi.org/10.1016/j.biortech.2010.08.117 Google Scholar
  75. Pattiya A, Suttibak S (2012) Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. J Anal Appl Pyrolysis 95:227–235.  https://doi.org/10.1016/j.jaap.2012.02.010 Google Scholar
  76. Pattiya A, Titiloye JO, Bridgwater AV (2007) Catalytic fast pyrolysis of cassava rhizome in a micro-reactor. Asian J Energy Environ 8:211–228Google Scholar
  77. Pattiya A, Titiloye JO, Bridgwater AV (2008) Fast pyrolysis of cassava rhizome in the presence of catalysts. J Anal Appl Pyrolysis 81:72–79.  https://doi.org/10.1016/j.jaap.2007.09.002 Google Scholar
  78. Pattiya A, Titiloye JO, Bridgwater AV (2010) Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel 89:244–253.  https://doi.org/10.1016/j.fuel.2009.07.003 Google Scholar
  79. Pattiya A, Sukkasi S, Goodwin V (2012) Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor. Energy 44:1067–1077.  https://doi.org/10.1016/j.energy.2012.04.035 Google Scholar
  80. Raman N, Pothiraj C (2008) Screening of Zymomonas mobilis and Saccharomyces cerevisiae strains for ethanol production from cassava waste. Rasayan J Chem 1:537–541Google Scholar
  81. Rattanachomsri U, Tanapongpipat S, Eurwilaichitr L, Champreda V (2009) Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J Biosci Bioeng 107:488–493.  https://doi.org/10.1016/j.jbiosc.2008.12.024 Google Scholar
  82. Ravindran V (1993) Cassava leaves as animal feed: potential and limitations. J Sci Food Agric 61:141–150.  https://doi.org/10.1002/jsfa.2740610202 Google Scholar
  83. Ray RC, Mohapatra S, Panda S, Kar S (2008) Solid substrate fermentation of cassava fibrous residue for production of α-amylase, lactic acid and ethanol. J Environ Biol 29:111–115.  https://doi.org/10.1016/0167-7799(85)90092-7 Google Scholar
  84. Rymowicz W, Kopec W, Stevens C (2004) Primary production of raw materials. In: Stevens C, Verhé R (eds) Renewable bioresources: scope and modification for non-food applications. Wiley, Chichester, UKGoogle Scholar
  85. Sanette M, Tando YN (2013) Cassava as feedstock for ethanol production in South Africa. Afr J Biotechnol 12:4975–4983.  https://doi.org/10.5897/AJB12.861 Google Scholar
  86. Sen R, Wiwatpanyaporn S, Annachhatre AP (2016) Influence of binders on physical properties of fuel briquettes produced from cassava rhizome waste. Int J Environ Waste Manag 17:158–175Google Scholar
  87. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189.  https://doi.org/10.1016/j.enpol.2008.08.016 Google Scholar
  88. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18.  https://doi.org/10.1016/j.bej.2008.10.019 Google Scholar
  89. Sirijanusorn S, Sriprateep K, Pattiya A (2013) Pyrolysis of cassava rhizome in a counter-rotating twin screw reactor unit. Bioresour Technol 139:343–348.  https://doi.org/10.1016/j.biortech.2013.04.024 Google Scholar
  90. Sivamani S, Baskar R (2015) Optimization of bioethanol production from cassava peel using statistical experimental design. Environ Prog Sustain Energy 34:567–574.  https://doi.org/10.1002/ep.11984 Google Scholar
  91. Sivamani S, Shanmugam A, Baskar R (2015) Optimization of ethanol production from mixed feedstock of cassava peel and cassava waste by coculture of Saccharomycopsis fibuligera NCIM 3161 and Zymomonas mobilis MTCC 92. Chem Bioprocess Eng.  https://doi.org/10.1201/b18402-4 Google Scholar
  92. Sovorawet B, Kongkiattikajorn J (2012) Bioproduction of ethanol in SHF and SSF from cassava stalks. Asia-Pacific J Sci Technol 17:565–572Google Scholar
  93. Srinorakutara T, Suesat C, Pitiyont B et al (2004) Utilization of waste from cassava starch plant for ethanol production. In: Proceedings of the joint international conference on sustainable energy and environment (SEE), pp 344–349Google Scholar
  94. Sriroth K (2001) Outlook of biomass utilization as biofuel in Thailand. http://www.biomass-asia-workshop.jp/biomassws/01workshop/material/Klanarong%81@Sriroth.pdf. Accessed 13 Mar 2015
  95. Suttibak S, Sriprateep K, Pattiya A (2012) Production of bio-oil via fast pyrolysis of cassava rhizome in a fluidised-bed reactor. Energy Proc 14:668–673.  https://doi.org/10.1016/j.egypro.2011.12.993 Google Scholar
  96. Thanarak P (2012) Supply chain management of agricultural waste for biomass utilization and CO2 emission reduction in the lower northern region of Thailand. Energy Proc 14:843–848.  https://doi.org/10.1016/j.egypro.2011.12.887 Google Scholar
  97. Thongchul N, Navankasattusas S, Yang ST (2010) Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis. Bioprocess Biosyst Eng 33:407–416.  https://doi.org/10.1007/s00449-009-0341-x Google Scholar
  98. Ubalua AO (2007) Cassava wastes: treatment options and value addition alternatives. Afr J Biotechnol 6:2065–2073.  https://doi.org/10.5897/AJB2007.000-2319 Google Scholar
  99. Uchechukwu-Agua AD, Caleb OJ, Opara UL (2015) Postharvest handling and storage of fresh cassava root and products: a review. Food Bioprocess Tech 8:729–748Google Scholar
  100. Ukpai PA, Nnabuchi MN (2012) Comparative study of biogas production from cow dung, cow pea and cassava peeling using 45 l biogas digester. Adv Appl Sci Res 3:1864–1869Google Scholar
  101. Ukpai PA, Agbo PE, Nnabuchi MN (2015) The effect of temperature on the rate of digestion and biogas production using cow dung, cow pea, cassava pending. Int J Sci Eng Res 6:1255–1261Google Scholar
  102. Wang L, Yang S-T (2007) Solid state fermentation and its applications. Bioprocess Value Added Prod Renew Resour.  https://doi.org/10.1016/B978-044452114-9/50019-0 Google Scholar
  103. Wei M, Zhu W, Xie G et al (2015) Cassava stem wastes as potential feedstock for fuel ethanol production: a basic parameter study. Renew Energy 83:970–978.  https://doi.org/10.1016/j.renene.2015.05.054 Google Scholar
  104. Wilkinson J, Rocha R (2008) The agro-processing sector: empirical overview, recent trends and development impact. Plenary paper for global industries forum, New Delhi, IndiaGoogle Scholar
  105. Woiciechowski AL, Saul N, Pandey A, Soccol CR (2002) Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study. Braz Arch Biol Technol 45:393–400Google Scholar
  106. Wongskeo P, Rangsunvigit P, Chavadej S (2012) Production of glucose from the hydrolysis of cassava residue using bacteria isolates from thai higher termites. World Acad Sci Eng Technol 64:353–356Google Scholar
  107. Yoonan K, Yowapui P, Kongkiattikajorn J (2007) Ethanol production from acid hydrolysate of cassava peels using Saccharomyces cerevisiae. KMUTT Res Dev J 30:405–418Google Scholar
  108. Zhang M, Xie L, Yin Z et al (2016) Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresour Technol 215:50–62.  https://doi.org/10.1016/j.biortech.2016.04.026 Google Scholar
  109. Zhu W, Lestander TA, Örberg H et al (2015) Cassava stems: a new resource to increase food and fuel production. GCB Bioenergy 7:72–83.  https://doi.org/10.1111/gcbb.12112 Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyKumaraguru College of TechnologyCoimbatoreIndia
  2. 2.Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulRepublic of Korea
  3. 3.Department of BiotechnologyPSG College of TechnologyCoimbatoreIndia
  4. 4.Wastewater Division, Faculty of HealthSabzevar University of Medical SciencesSabzevarIran
  5. 5.Department of Engineering, Kashmar BranchIslamic Azad UniversityKashmarIran
  6. 6.Department of Food TechnologyKongu Engineering CollegePerunduraiIndia

Personalised recommendations