Advertisement

Fertility preservation options in transgender people: A review

  • Natnita Mattawanon
  • Jessica B. Spencer
  • David A. SchirmerIII
  • Vin Tangpricha
Article
  • 44 Downloads

Abstract

Gender affirming procedures adversely affect the reproductive potential of transgender people. Thus, fertility preservation options should be discussed with all transpeople before medical and surgical transition. In transwomen, semen cryopreservation is typically straightforward and widely available at fertility centers. The optimal number of vials frozen depends on their reproductive goals and treatment options, therefore a consultation with a fertility specialist is optimal. Experimental techniques including spermatogonium stem cells (SSC) and testicular tissue preservation are technologies currently under development in prepubertal individuals but are not yet clinically available. In transmen, embryo and/or oocyte cryopreservation is currently the best option for fertility preservation. Embryo cryopreservation requires fertilization of the transman’s oocytes with a donor or partner’s sperm prior to cryopreservation, but this limits his future options for fertilizing the eggs with another partner or donor. Oocyte cryopreservation offers transmen the opportunity to preserve their fertility without committing to a male partner or sperm donor at the time of cryopreservation. Both techniques however require at least a two-week treatment course, egg retrieval under sedation and considerable cost. Ovarian tissue cryopreservation is a promising experimental method that may be performed at the same time as gender affirming surgery but is offered in only a limited amount of centers worldwide. In select places, this method may be considered for prepubertal children, adolescents, and adults when ovarian stimulation is not possible. Novel methods such as in-vitro activation of primordial follicles, in vitro maturation of immature oocytes and artificial gametes are under development and may hold promise for the future.

Keywords

Fertility preservation Reproduction Transgender health Transgender 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hembree WC, Cohen-Kettenis PT, Gooren L, Hannema SE, Meyer WJ, Murad MH, et al. Endocrine treatment of gender-dysphoric/gender-incongruent persons: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2017;102(11):3869–903.  https://doi.org/10.1210/jc.2017-01658.CrossRefGoogle Scholar
  2. 2.
    Martinez F. International Society for Fertility Preservation E-AEWG. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Fertil Steril. 2017;108(3):407–15 e11.  https://doi.org/10.1016/j.fertnstert.2017.05.024.CrossRefPubMedGoogle Scholar
  3. 3.
    WPATH. Standards of Care for the Health of Transsexual, Transgender, and Gender Nonconforming People Version 7. 2011.Google Scholar
  4. 4.
    Tornello SL, Bos H. Parenting intentions among transgender individuals. LGBT Health. 2017;4(2):115–20.  https://doi.org/10.1089/lgbt.2016.0153.CrossRefPubMedGoogle Scholar
  5. 5.
    Wierckx K, Van Caenegem E, Pennings G, Elaut E, Dedecker D, Van de Peer F, et al. Reproductive wish in transsexual men. Hum Reprod. 2012;27(2):483–7.  https://doi.org/10.1093/humrep/der406.CrossRefPubMedGoogle Scholar
  6. 6.
    Wierckx K, Stuyver I, Weyers S, Hamada A, Agarwal A, De Sutter P, et al. Sperm freezing in transsexual women. Arch Sex Behav. 2012;41(5):1069–71.  https://doi.org/10.1007/s10508-012-0012-x.CrossRefPubMedGoogle Scholar
  7. 7.
    De Sutter P, Kira K, Verschoor A, Hotimsky A. The Desire to have Children and the Preservation of Fertility in Transsexual Women: A Survey. Int J Transgend. 2002;6(3).Google Scholar
  8. 8.
    Goldman RH, Kaser DJ, Missmer SA, Farland LV. Scout, Ashby RK et al. fertility treatment for the transgender community: a public opinion study. J Assist Reprod Genet. 2017;34(11):1457–67.  https://doi.org/10.1007/s10815-017-1035-y.CrossRefPubMedGoogle Scholar
  9. 9.
    Armuand G, Dhejne C, Olofsson JI, Rodriguez-Wallberg KA. Transgender men's experiences of fertility preservation: a qualitative study. Hum Reprod. 2017;32(2):383–90.  https://doi.org/10.1093/humrep/dew323.CrossRefPubMedGoogle Scholar
  10. 10.
    Mitu K. Transgender reproductive choice and fertility preservation. AMA J Ethics. 2016;18(11):1119–25.  https://doi.org/10.1001/journalofethics.2016.18.11.pfor2-1611.CrossRefPubMedGoogle Scholar
  11. 11.
    Jones CA, Reiter L, Greenblatt E. Fertility preservation in transgender patients. Int J Transgend. 2016;17(2):76–82.  https://doi.org/10.1080/15532739.2016.1153992.CrossRefGoogle Scholar
  12. 12.
    Wakefield BW, Boguszewski K, Cheney D, Taylor J. 74 - trends in fertility preservation for transgender adolescents and young adults at an Academic Referral Center. J Adolesc Health. 2018;62(2, Supplement):S41.  https://doi.org/10.1016/j.jadohealth.2017.11.081.CrossRefGoogle Scholar
  13. 13.
    Chen D, Simons L, Johnson EK, Lockart BA, Finlayson C. Fertility preservation for transgender adolescents. J Adolesc Health. 2017;61(1):120–3.  https://doi.org/10.1016/j.jadohealth.2017.01.022.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nahata L, Tishelman AC, Caltabellotta NM, Quinn GP. Low fertility preservation utilization among transgender youth. J Adolesc Health. 2017;61(1):40–4.  https://doi.org/10.1016/j.jadohealth.2016.12.012.CrossRefGoogle Scholar
  15. 15.
    James-Abra S, Tarasoff LA, Green D, Epstein R, Anderson S, Marvel S, et al. Trans people's experiences with assisted reproduction services: a qualitative study. Hum Reprod. 2015;30(6):1365–74.  https://doi.org/10.1093/humrep/dev087.CrossRefPubMedGoogle Scholar
  16. 16.
    Picton HM, Wyns C, Anderson RA, Goossens E, Jahnukainen K, Kliesch S, et al. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Hum Reprod. 2015;30(11):2463–75.  https://doi.org/10.1093/humrep/dev190.CrossRefPubMedGoogle Scholar
  17. 17.
    Schneider F, Kliesch S, Schlatt S, Neuhaus N. Andrology of male-to-female transsexuals: influence of cross-sex hormone therapy on testicular function. Andrology. 2017;5(5):873–80.  https://doi.org/10.1111/andr.12405.CrossRefPubMedGoogle Scholar
  18. 18.
    Nieschlag E, Kamischke A, Behre H. Hormonal male contraception: the essential role of testosterone. In: Testosterone: action, deficiency, substitution. 3rd ed. Cambridge: Cambridge University Press; 2004. p. 685–714.CrossRefGoogle Scholar
  19. 19.
    Fredricsson B, Carlstrom K. Effects of low doses of cyproterone acetate on sperm morphology and some other parameters of reproduction in normal men. Andrologia. 1981;13(4):369–75.CrossRefGoogle Scholar
  20. 20.
    Fogh M, Corker CS, Hunter WM, McLean H, Philip J, Schou G, et al. The effects of low doses of cyproterone acetate on some functions of the reproductive system in normal men. Acta Endocrinol. 1979;91(3):545–52.CrossRefGoogle Scholar
  21. 21.
    Wang C, Yeung KK. Use of low-dosage oral cyproterone acetate as a male contraceptive. Contraception. 1980;21(3):245–72.CrossRefGoogle Scholar
  22. 22.
    Meriggiola MC, Bremner WJ, Costantino A, Di Cintio G, Flamigni C. Low dose of cyproterone acetate and testosterone enanthate for contraception in men. Hum Reprod. 1998;13(5):1225–9.CrossRefGoogle Scholar
  23. 23.
    Meriggiola MC, Bremner WJ, Paulsen CA, Valdiserri A, Incorvaia L, Motta R, et al. A combined regimen of cyproterone acetate and testosterone enanthate as a potentially highly effective male contraceptive. J Clin Endocrinol Metab. 1996;81(8):3018–23.  https://doi.org/10.1210/jcem.81.8.8768868.CrossRefPubMedGoogle Scholar
  24. 24.
    Steelman SL, Brooks JR, Morgan ER, Patanelli DJ. Anti-androgenic activity of spironolactone. Steroids. 1969;14(4):449–50.CrossRefGoogle Scholar
  25. 25.
    Corvol P, Michaud A, Menard J, Freifeld M, Mahoudeau J. Antiandrogenic effect of spirolactones: mechanism of action. Endocrinology. 1975;97(1):52–8.  https://doi.org/10.1210/endo-97-1-52.CrossRefPubMedGoogle Scholar
  26. 26.
    Mokhtar M, Shariatie M, Tadayon N. The effect of spironolactone on concentration of LH, FSH, testosterone Di-hydrotestosterone and spermatogenesis in rats. J Ardabil Univ Med Sci. 2007;7(1):62–8.Google Scholar
  27. 27.
    Kose MG, Erdem SR, Peskircioglu CL, Caylak B. Effects of angiogenesis inhibition by spironolactone on isolated vas deferens contractility in an experimental varicocele model in rats. Urology. 2012;80(4):816–21.  https://doi.org/10.1016/j.urology.2012.07.017.CrossRefPubMedGoogle Scholar
  28. 28.
    Gokhan-Kose M, Erdem SR, Peskircioglu CL, Caylak B. Angiogenesis inhibition impairs testicular morphology in experimental left varicocele rat model. Actas Urol Esp. 2014;38(7):459–64.  https://doi.org/10.1016/j.acuro.2013.12.013.CrossRefPubMedGoogle Scholar
  29. 29.
    Lunglmayr G, Girsch E, Meixner EM, Viehberger G, Bieglmayer C. Effects of long term GnRH analogue treatment on hormone levels and spermatogenesis in patients with carcinoma of the prostate. Urol Res. 1988;16(4):315–9.CrossRefGoogle Scholar
  30. 30.
    Labrie F, Cusan L, Seguin C, Belanger A, Pelletier G, Reeves J, et al. Antifertility effects of LHRH agonists in the male rat and inhibition of testicular steroidogenesis in man. Int J Fertil. 1980;25(3):157–70.PubMedGoogle Scholar
  31. 31.
    Labrie F, Belanger A, Luu-The V, Labrie C, Simard J, Cusan L, et al. Gonadotropin-releasing hormone agonists in the treatment of prostate cancer. Endocr Rev. 2005;26(3):361–79.  https://doi.org/10.1210/er.2004-0017.CrossRefPubMedGoogle Scholar
  32. 32.
    Linde R, Doelle GC, Alexander N, Kirchner F, Vale W, Rivier J, et al. Reversible inhibition of testicular steroidogenesis and spermatogenesis by a potent gonadotropin-releasing hormone agonist in normal men: an approach toward the development of a male contraceptive. N Engl J Med. 1981;305(12):663–7.  https://doi.org/10.1056/NEJM198109173051203.CrossRefPubMedGoogle Scholar
  33. 33.
    Kuber W, Viehberger G, Zeillinger R, Spona J. Effects of the duration of therapy with the LHRH agonist D-ser (BUT)6 Azgly10-LHRH (ICI 118-630) on the steroid hormone content and the morphology of human testicular tissue in the treatment of patients with advanced prostate cancer. Urol Res. 1991;19(1):19–24.CrossRefGoogle Scholar
  34. 34.
    Bhasin S, Swerdloff RS. Mechanisms of gonadotropin-releasing hormone agonist action in the human male. Endocr Rev. 1986;7(1):106–14.  https://doi.org/10.1210/edrv-7-1-106.CrossRefPubMedGoogle Scholar
  35. 35.
    Behre HM, Nashan D, Hubert W, Nieschlag E. Depot gonadotropin-releasing hormone agonist blunts the androgen-induced suppression of spermatogenesis in a clinical trial of male contraception. J Clin Endocrinol Metab. 1992;74(1):84–90.  https://doi.org/10.1210/jcem.74.1.1727833.CrossRefPubMedGoogle Scholar
  36. 36.
    Leavy M, Trottmann M, Liedl B, Reese S, Stief C, Freitag B, et al. Effects of elevated beta-estradiol levels on the functional morphology of the testis - new insights. Sci Rep. 2017;7:39931.  https://doi.org/10.1038/srep39931.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Thiagaraj D, Gunasegaram R, Loganath A, Peh KL, Kottegoda SR, Ratnam SS. Histopathology of the testes from male transsexuals on oestrogen therapy. Ann Acad Med Singap. 1987;16(2):347–8.PubMedGoogle Scholar
  38. 38.
    Schulze C. Response of the human testis to long-term estrogen treatment: morphology of Sertoli cells, Leydig cells and spermatogonial stem cells. Cell Tissue Res. 1988;251(1):31–43.CrossRefGoogle Scholar
  39. 39.
    Kaushik MC, Misro MM, Sehgal N, Nandan D. Effect of chronic oestrogen administration on androgen receptor expression in reproductive organs and pituitary of adult male rat. Andrologia. 2010;42(3):193–205.  https://doi.org/10.1111/j.1439-0272.2009.00979.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Kaushik MC, Misro MM, Sehgal N, Nandan D. AR versus ER (alpha) expression in the testis and pituitary following chronic estrogen administration in adult rat. Syst Biol Reprod Med. 2010;56(6):420–30.  https://doi.org/10.3109/19396368.2010.501891.CrossRefPubMedGoogle Scholar
  41. 41.
    Schneider F, Neuhaus N, Wistuba J, Zitzmann M, Hess J, Mahler D, et al. Testicular functions and clinical characterization of patients with gender dysphoria (GD) undergoing sex reassignment surgery (SRS). J Sex Med. 2015;12(11):2190–200.  https://doi.org/10.1111/jsm.13022.CrossRefPubMedGoogle Scholar
  42. 42.
    Hamada A, Kingsberg S, Wierckx K, T'Sjoen G, De Sutter P, Knudson G, et al. Semen characteristics of transwomen referred for sperm banking before sex transition: a case series. Andrologia. 2015;47(7):832–8.  https://doi.org/10.1111/and.12330.CrossRefPubMedGoogle Scholar
  43. 43.
    T'Sjoen G, Van Caenegem E, Wierckx K. Transgenderism and reproduction. Curr Opin Endocrinol Diabetes Obes. 2013;20(6):575–9.  https://doi.org/10.1097/01.med.0000436184.42554.b7.CrossRefPubMedGoogle Scholar
  44. 44.
    Kafetsoulis A, Brackett NL, Ibrahim E, Attia GR, Lynne CM. Current trends in the treatment of infertility in men with spinal cord injury. Fertil Steril. 2006;86(4):781–9.  https://doi.org/10.1016/j.fertnstert.2006.01.060.CrossRefPubMedGoogle Scholar
  45. 45.
    Meseguer M, Garrido N, Remohi J, Pellicer A, Simon C, Martinez-Jabaloyas JM, et al. Testicular sperm extraction (TESE) and ICSI in patients with permanent azoospermia after chemotherapy. Hum Reprod. 2003;18(6):1281–5.CrossRefGoogle Scholar
  46. 46.
    Hsiao W, Stahl PJ, Osterberg EC, Nejat E, Palermo GD, Rosenwaks Z, et al. Successful treatment of postchemotherapy azoospermia with microsurgical testicular sperm extraction: the Weill Cornell experience. J Clin Oncol. 2011;29(12):1607–11.  https://doi.org/10.1200/JCO.2010.33.7808.CrossRefGoogle Scholar
  47. 47.
    Damani MN, Master V, Meng MV, Burgess C, Turek P, Oates RD. Postchemotherapy ejaculatory azoospermia: fatherhood with sperm from testis tissue with intracytoplasmic sperm injection. J Clin Oncol. 2002;20(4):930–6.  https://doi.org/10.1200/JCO.2002.20.4.930.CrossRefPubMedGoogle Scholar
  48. 48.
    De Roo C, Tilleman K, T'Sjoen G, De Sutter P. Fertility options in transgender people. Int Rev Psychiatry. 2016;28(1):112–9.  https://doi.org/10.3109/09540261.2015.1084275.CrossRefPubMedGoogle Scholar
  49. 49.
    Ma HM, Chen SK, Chen RM, Zhu C, Xiong F, Li T, et al. Pubertal development timing in urban Chinese boys. Int J Androl. 2011;34(5 Pt 2):e435–45.  https://doi.org/10.1111/j.1365-2605.2011.01173.x.CrossRefPubMedGoogle Scholar
  50. 50.
    Guizar-Vazquez JJ, Rosales-Lopez A, Ortiz-Jalomo R, Nava-Delgado SE, Salamanca-Gomez F. Age of onset of spermaturia (spermache) in 669 Mexican children and its relation to secondary sexual characteristics and height. Bol Med Hosp Infant Mex. 1992;49(1):12–7.PubMedGoogle Scholar
  51. 51.
    Nielsen CT, Skakkebaek NE, Richardson DW, Darling JA, Hunter WM, Jorgensen M, et al. Onset of the release of spermatozoa (spermarche) in boys in relation to age, testicular growth, pubic hair, and height. J Clin Endocrinol Metab. 1986;62(3):532–5.  https://doi.org/10.1210/jcem-62-3-532.CrossRefPubMedGoogle Scholar
  52. 52.
    van Casteren NJ, Dohle GR, Romijn JC, de Muinck Keizer-Schrama SM, Weber RF, van den Heuvel-Eibrink MM. Semen cryopreservation in pubertal boys before gonadotoxic treatment and the role of endocrinologic evaluation in predicting sperm yield. Fertil Steril. 2008;90(4):1119–25.  https://doi.org/10.1016/j.fertnstert.2007.08.006.CrossRefPubMedGoogle Scholar
  53. 53.
    Daudin M, Rives N, Walschaerts M, Drouineaud V, Szerman E, Koscinski I, et al. Sperm cryopreservation in adolescents and young adults with cancer: results of the French national sperm banking network (CECOS). Fertil Steril. 2015;103(2):478–86 e1.  https://doi.org/10.1016/j.fertnstert.2014.11.012.CrossRefPubMedGoogle Scholar
  54. 54.
    Bahadur G, Ling KL, Hart R, Ralph D, Wafa R, Ashraf A, et al. Semen quality and cryopreservation in adolescent cancer patients. Hum Reprod. 2002;17(12):3157–61.CrossRefGoogle Scholar
  55. 55.
    Freour T, Mirallie S, Jean M, Barriere P. Sperm banking and assisted reproductive outcome in men with cancer: a 10 years' experience. Int J Clin Oncol. 2012;17(6):598–603.  https://doi.org/10.1007/s10147-011-0330-3.CrossRefPubMedGoogle Scholar
  56. 56.
    Schmidt KL, Larsen E, Bangsboll S, Meinertz H, Carlsen E, Andersen AN. Assisted reproduction in male cancer survivors: fertility treatment and outcome in 67 couples. Hum Reprod. 2004;19(12):2806–10.  https://doi.org/10.1093/humrep/deh518.CrossRefPubMedGoogle Scholar
  57. 57.
    Ohlander S, Hotaling J, Kirshenbaum E, Niederberger C, Eisenberg ML. Impact of fresh versus cryopreserved testicular sperm upon intracytoplasmic sperm injection pregnancy outcomes in men with azoospermia due to spermatogenic dysfunction: a meta-analysis. Fertil Steril. 2014;101(2):344–9.  https://doi.org/10.1016/j.fertnstert.2013.10.012.CrossRefPubMedGoogle Scholar
  58. 58.
    Wyns C, Curaba M, Petit S, Vanabelle B, Laurent P, Wese JF, et al. Management of fertility preservation in prepubertal patients: 5 years' experience at the Catholic University of Louvain. Hum Reprod. 2011;26(4):737–47.  https://doi.org/10.1093/humrep/deq387.CrossRefPubMedGoogle Scholar
  59. 59.
    Bertelloni S, Baroncelli GI, Ferdeghini M, Menchini-Fabris F, Saggese G. Final height, gonadal function and bone mineral density of adolescent males with central precocious puberty after therapy with gonadotropin-releasing hormone analogues. Eur J Pediatr. 2000;159(5):369–74.CrossRefGoogle Scholar
  60. 60.
    Loverro G, Resta L, Dellino M, Edoardo DN, Cascarano MA, Loverro M, et al. Uterine and ovarian changes during testosterone administration in young female-to-male transsexuals. Taiwan J Obstet Gynecol. 2016;55(5):686–91.  https://doi.org/10.1016/j.tjog.2016.03.004.CrossRefPubMedGoogle Scholar
  61. 61.
    Tuckerman EM, Okon MA, Li T, Laird SM. Do androgens have a direct effect on endometrial function? An in vitro study. Fertil Steril. 2000;74(4):771–9.CrossRefGoogle Scholar
  62. 62.
    Perrone AM, Cerpolini S, Maria Salfi NC, Ceccarelli C, De Giorgi LB, Formelli G, et al. Effect of long-term testosterone administration on the endometrium of female-to-male (FtM) transsexuals. J Sex Med. 2009;6(11):3193–200.  https://doi.org/10.1111/j.1743-6109.2009.01380.x.CrossRefPubMedGoogle Scholar
  63. 63.
    Miller N, Bedard YC, Cooter NB, Shaul DL. Histological changes in the genital tract in transsexual women following androgen therapy. Histopathology. 1986;10(7):661–9.CrossRefGoogle Scholar
  64. 64.
    Grynberg M, Fanchin R, Dubost G, Colau JC, Bremont-Weil C, Frydman R, et al. Histology of genital tract and breast tissue after long-term testosterone administration in a female-to-male transsexual population. Reprod BioMed Online. 2010;20(4):553–8.  https://doi.org/10.1016/j.rbmo.2009.12.021.CrossRefPubMedGoogle Scholar
  65. 65.
    Spinder T, Spijkstra JJ, van den Tweel JG, Burger CW, van Kessel H, Hompes PG, et al. The effects of long term testosterone administration on pulsatile luteinizing hormone secretion and on ovarian histology in eugonadal female to male transsexual subjects. J Clin Endocrinol Metab. 1989;69(1):151–7.  https://doi.org/10.1210/jcem-69-1-151.CrossRefPubMedGoogle Scholar
  66. 66.
    Amirikia H, Savoy-Moore RT, Sundareson AS, Moghissi KS. The effects of long-term androgen treatment on the ovary. Fertil Steril. 1986;45(2):202–8.CrossRefGoogle Scholar
  67. 67.
    Ikeda K, Baba T, Noguchi H, Nagasawa K, Endo T, Kiya T, et al. Excessive androgen exposure in female-to-male transsexual persons of reproductive age induces hyperplasia of the ovarian cortex and stroma but not polycystic ovary morphology. Hum Reprod. 2013;28(2):453–61.  https://doi.org/10.1093/humrep/des385.CrossRefPubMedGoogle Scholar
  68. 68.
    Caanen MR, Schouten NE, Kuijper EAM, van Rijswijk J, van den Berg MH, van Dulmen-den Broeder E, et al. Effects of long-term exogenous testosterone administration on ovarian morphology, determined by transvaginal (3D) ultrasound in female-to-male transsexuals. Hum Reprod. 2017;32(7):1457–64.  https://doi.org/10.1093/humrep/dex098.CrossRefPubMedGoogle Scholar
  69. 69.
    Van Den Broecke R, Van Der Elst J, Liu J, Hovatta O, Dhont M. The female-to-male transsexual patient: a source of human ovarian cortical tissue for experimental use. Hum Reprod. 2001;16(1):145–7.CrossRefGoogle Scholar
  70. 70.
    De Roo C, Lierman S, Tilleman K, Peynshaert K, Braeckmans K, Caanen M, et al. Ovarian tissue cryopreservation in female-to-male transgender people: insights into ovarian histology and physiology after prolonged androgen treatment. Reprod BioMed Online. 2017;34(6):557–66.  https://doi.org/10.1016/j.rbmo.2017.03.008.CrossRefPubMedGoogle Scholar
  71. 71.
    Rodriguez-Wallberg KA, Dhejne C, Stefenson M, Degerblad M, Olofsson JI. Preserving eggs for men's fertility. A pilot experience with fertility preservation for female-to-male transsexuals in Sweden. Fertil Steril. 2014;102(3):e160–e1.  https://doi.org/10.1016/j.fertnstert.2014.07.550.CrossRefGoogle Scholar
  72. 72.
    Light AD, Obedin-Maliver J, Sevelius JM, Kerns JL. Transgender men who experienced pregnancy after female-to-male gender transitioning. Obstet Gynecol. 2014;124(6):1120–7.  https://doi.org/10.1097/AOG.0000000000000540.CrossRefPubMedGoogle Scholar
  73. 73.
    Donnez J, Dolmans MM. Fertility preservation in women. N Engl J Med. 2017;377(17):1657–65.  https://doi.org/10.1056/NEJMra1614676.CrossRefGoogle Scholar
  74. 74.
    Ethics Committee of American Society for Reproductive M. Fertility preservation and reproduction in patients facing gonadotoxic therapies: a committee opinion. Fertil Steril. 2013;100(5):1224–31.  https://doi.org/10.1016/j.fertnstert.2013.08.041.CrossRefGoogle Scholar
  75. 75.
    Gong D, Liu YL, Zheng Z, Tian YF, Li Z. An overview on ethical issues about sperm donation. Asian J Androl. 2009;11(6):645–52.  https://doi.org/10.1038/aja.2009.61.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ethics Committee of the American Society for Reproductive M. Interests, obligations, and rights in gamete donation: a committee opinion. Fertil Steril. 2014;102(3):675–81.  https://doi.org/10.1016/j.fertnstert.2014.06.001.CrossRefGoogle Scholar
  77. 77.
    Rienzi L, Ubaldi FM. Oocyte versus embryo cryopreservation for fertility preservation in cancer patients: guaranteeing a women's autonomy. J Assist Reprod Genet. 2015;32(8):1195–6.  https://doi.org/10.1007/s10815-015-0507-1.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Donnez J, Dolmans MM. Fertility preservation in women. Nat Rev Endocrinol. 2013;9(12):735–49.  https://doi.org/10.1038/nrendo.2013.205.CrossRefPubMedGoogle Scholar
  79. 79.
    Cobo A, Garcia-Velasco JA, Domingo J, Remohi J, Pellicer A. Is vitrification of oocytes useful for fertility preservation for age-related fertility decline and in cancer patients? Fertil Steril. 2013;99(6):1485–95.  https://doi.org/10.1016/j.fertnstert.2013.02.050.CrossRefPubMedGoogle Scholar
  80. 80.
    Glujovsky D, Riestra B, Sueldo C, Fiszbajn G, Repping S, Nodar F, et al. Vitrification versus slow freezing for women undergoing oocyte cryopreservation. Cochrane Database Syst Rev. 2014;9:CD010047.  https://doi.org/10.1002/14651858.CD010047.pub2.CrossRefGoogle Scholar
  81. 81.
    Cobo A, Meseguer M, Remohi J, Pellicer A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod. 2010;25(9):2239–46.  https://doi.org/10.1093/humrep/deq146.CrossRefPubMedGoogle Scholar
  82. 82.
    Potdar N, Gelbaya TA, Nardo LG. Oocyte vitrification in the 21st century and post-warming fertility outcomes: a systematic review and meta-analysis. Reprod BioMed Online. 2014;29(2):159–76.  https://doi.org/10.1016/j.rbmo.2014.03.024.CrossRefPubMedGoogle Scholar
  83. 83.
    Practice Committees of American Society for Reproductive M, Society for Assisted Reproductive T. Mature oocyte cryopreservation: a guideline. Fertil Steril 2013;99(1):37–43.  https://doi.org/10.1016/j.fertnstert.2012.09.028.
  84. 84.
    Oktay K, Cil AP, Bang H. Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril. 2006;86(1):70–80.  https://doi.org/10.1016/j.fertnstert.2006.03.017.CrossRefPubMedGoogle Scholar
  85. 85.
    Cobo A, Garcia-Velasco JA, Coello A, Domingo J, Pellicer A, Remohi J. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil Steril. 2016;105(3):755–64 e8.  https://doi.org/10.1016/j.fertnstert.2015.11.027.CrossRefPubMedGoogle Scholar
  86. 86.
    Maxwell S, Noyes N, Keefe D, Berkeley AS, Goldman KN. Pregnancy outcomes after fertility preservation in transgender men. Obstet Gynecol. 2017;129(6):1031–4.  https://doi.org/10.1097/AOG.0000000000002036.CrossRefPubMedGoogle Scholar
  87. 87.
    Rosen MP, Shen S, Dobson AT, Rinaudo PF, McCulloch CE, Cedars MI. A quantitative assessment of follicle size on oocyte developmental competence. Fertil Steril. 2008;90(3):684–90.  https://doi.org/10.1016/j.fertnstert.2007.02.011.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Wittmaack FM, Kreger DO, Blasco L, Tureck RW, Mastroianni L Jr, Lessey BA. Effect of follicular size on oocyte retrieval, fertilization, cleavage, and embryo quality in in vitro fertilization cycles: a 6-year data collection. Fertil Steril. 1994;62(6):1205–10.CrossRefGoogle Scholar
  89. 89.
    Greve T, Schmidt KT, Kristensen SG, Ernst E, Andersen CY. Evaluation of the ovarian reserve in women transplanted with frozen and thawed ovarian cortical tissue. Fertil Steril. 2012;97(6):1394–8 e1.  https://doi.org/10.1016/j.fertnstert.2012.02.036.CrossRefPubMedGoogle Scholar
  90. 90.
    Wallace WH, Smith AG, Kelsey TW, Edgar AE, Anderson RA. Fertility preservation for girls and young women with cancer: population-based validation of criteria for ovarian tissue cryopreservation. Lancet Oncol. 2014;15(10):1129–36.  https://doi.org/10.1016/S1470-2045(14)70334-1.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Stoop D, Cobo A, Silber S. Fertility preservation for age-related fertility decline. Lancet. 2014;384(9950):1311–9.  https://doi.org/10.1016/S0140-6736(14)61261-7.CrossRefPubMedGoogle Scholar
  92. 92.
    Beckmann MW, Dittrich R, Lotz L, van der Ven K, van der Ven HH, Liebenthron J, et al. Fertility protection: complications of surgery and results of removal and transplantation of ovarian tissue. Reprod BioMed Online. 2018;36(2):188–96.  https://doi.org/10.1016/j.rbmo.2017.10.109.CrossRefPubMedGoogle Scholar
  93. 93.
    Wallace WH, Kelsey TW, Anderson RA. Fertility preservation in pre-pubertal girls with cancer: the role of ovarian tissue cryopreservation. Fertil Steril. 2016;105(1):6–12.  https://doi.org/10.1016/j.fertnstert.2015.11.041.CrossRefPubMedGoogle Scholar
  94. 94.
    Practice Committee of American Society for Reproductive M. Ovarian tissue cryopreservation: a committee opinion. Fertil Steril. 2014;101(5):1237–43.  https://doi.org/10.1016/j.fertnstert.2014.02.052.CrossRefGoogle Scholar
  95. 95.
    Schmidt KL, Ernst E, Byskov AG, Nyboe Andersen A, Yding AC. Survival of primordial follicles following prolonged transportation of ovarian tissue prior to cryopreservation. Hum Reprod. 2003;18(12):2654–9.CrossRefGoogle Scholar
  96. 96.
    Donnez J, Dolmans MM, Pellicer A, Diaz-Garcia C, Sanchez Serrano M, Schmidt KT, et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril. 2013;99(6):1503–13.  https://doi.org/10.1016/j.fertnstert.2013.03.030.CrossRefPubMedGoogle Scholar
  97. 97.
    Ting AY, Mullen SF, Zelinski MB. Vitrification of ovarian tissue for fertility preservation. In: Woodruff TK, Gosiengfiao YC, editors. Pediatric and adolescent Oncofertility: best practices and emerging technologies. Cham: Springer International Publishing; 2017. p. 79–97.CrossRefGoogle Scholar
  98. 98.
    Silber S. Chapter 13 human ovarian tissue Vitrification. Methods Mol Biol. 2017;1568:177–94.  https://doi.org/10.1007/978-1-4939-6828-2_13.CrossRefPubMedGoogle Scholar
  99. 99.
    Jensen AK, Kristensen SG, Macklon KT, Jeppesen JV, Fedder J, Ernst E, et al. Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark. Hum Reprod. 2015;30(12):2838–45.  https://doi.org/10.1093/humrep/dev230.CrossRefPubMedGoogle Scholar
  100. 100.
    Kim SS. Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site: 10 year longitudinal follow-up study. J Assist Reprod Genet. 2012;29(6):489–93.  https://doi.org/10.1007/s10815-012-9757-3.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Donnez J, Dolmans MM, Pellicer A, Diaz-Garcia C, Ernst E, Macklon KT, et al. Fertility preservation for age-related fertility decline. Lancet. 2015;385(9967):506–7.  https://doi.org/10.1016/S0140-6736(15)60198-2.CrossRefGoogle Scholar
  102. 102.
    Yin H, Jiang H, Kristensen SG, Andersen CY. Vitrification of in vitro matured oocytes collected from surplus ovarian medulla tissue resulting from fertility preservation of ovarian cortex tissue. J Assist Reprod Genet. 2016;33(6):741–6.  https://doi.org/10.1007/s10815-016-0691-7.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Abir R, Ben-Aharon I, Garor R, Yaniv I, Ash S, Stemmer SM, et al. Cryopreservation of in vitro matured oocytes in addition to ovarian tissue freezing for fertility preservation in paediatric female cancer patients before and after cancer therapy. Hum Reprod. 2016;31(4):750–62.  https://doi.org/10.1093/humrep/dew007.CrossRefPubMedGoogle Scholar
  104. 104.
    Segers I, Mateizel I, Van Moer E, Smitz J, Tournaye H, Verheyen G, et al. In vitro maturation (IVM) of oocytes recovered from ovariectomy specimens in the laboratory: a promising "ex vivo" method of oocyte cryopreservation resulting in the first report of an ongoing pregnancy in Europe. J Assist Reprod Genet. 2015;32(8):1221–31.  https://doi.org/10.1007/s10815-015-0528-9.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Practice Committees of the American Society for Reproductive M, the Society for Assisted Reproductive T. In vitro maturation: a committee opinion. Fertil Steril. 2013;99(3):663–6.  https://doi.org/10.1016/j.fertnstert.2012.12.031.CrossRefGoogle Scholar
  106. 106.
    Fadini R, Mignini Renzini M, Dal Canto M, Epis A, Crippa M, Caliari I, et al. Oocyte in vitro maturation in normo-ovulatory women. Fertil Steril. 2013;99(5):1162–9.  https://doi.org/10.1016/j.fertnstert.2013.01.138.CrossRefPubMedGoogle Scholar
  107. 107.
    Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110(43):17474–9.  https://doi.org/10.1073/pnas.1312830110.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Suzuki N, Yoshioka N, Takae S, Sugishita Y, Tamura M, Hashimoto S, et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30(3):608–15.  https://doi.org/10.1093/humrep/deu353.CrossRefPubMedGoogle Scholar
  109. 109.
    Zhai J, Yao G, Dong F, Bu Z, Cheng Y, Sato Y, et al. In vitro activation of follicles and fresh tissue auto-transplantation in primary ovarian insufficiency patients. J Clin Endocrinol Metab. 2016;101(11):4405–12.  https://doi.org/10.1210/jc.2016-1589.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Kawamura K, Cheng Y, Sun YP, Zhai J, Diaz-Garcia C, Simon C, et al. Ovary transplantation: to activate or not to activate. Hum Reprod. 2015;30(11):2457–60.  https://doi.org/10.1093/humrep/dev211.CrossRefPubMedGoogle Scholar
  111. 111.
    Sato T, Katagiri K, Yokonishi T, Kubota Y, Inoue K, Ogonuki N, et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat Commun. 2011;2:472.  https://doi.org/10.1038/ncomms1478.CrossRefPubMedGoogle Scholar
  112. 112.
    Sun M, Yuan Q, Niu M, Wang H, Wen L, Yao C, et al. Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ. 2018.  https://doi.org/10.1038/s41418-017-0015-1.
  113. 113.
    Vassena R, Eguizabal C, Heindryckx B, Sermon K, Simon C, van Pelt AM, et al. Stem cells in reproductive medicine: ready for the patient? Hum Reprod. 2015;30(9):2014–21.  https://doi.org/10.1093/humrep/dev181.CrossRefPubMedGoogle Scholar
  114. 114.
    Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell. 2016;18(3):330–40.  https://doi.org/10.1016/j.stem.2016.01.017.CrossRefPubMedGoogle Scholar
  115. 115.
    Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature. 2016;539(7628):299–303.  https://doi.org/10.1038/nature20104.CrossRefGoogle Scholar
  116. 116.
    Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science. 2017;356(6334).  https://doi.org/10.1126/science.aal1810.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Natnita Mattawanon
    • 1
  • Jessica B. Spencer
    • 2
  • David A. SchirmerIII
    • 2
  • Vin Tangpricha
    • 3
    • 4
  1. 1.Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  2. 2.Division of Reproductive Endocrinology, Department of Gynecology and ObstetricsEmory University School of MedicineAtlantaUSA
  3. 3.Division of Endocrinology, Metabolism and Lipids, Department of MedicineEmory University School of MedicineAtlantaUSA
  4. 4.Atlanta VA Medical CenterDecaturUSA

Personalised recommendations