Reviews in Endocrine and Metabolic Disorders

, Volume 19, Issue 4, pp 311–323 | Cite as

Thyroid diseases and skin autoimmunity

  • Enke Baldini
  • Teresa Odorisio
  • Chiara Tuccilli
  • Severino Persechino
  • Salvatore Sorrenti
  • Antonio Catania
  • Daniele Pironi
  • Giovanni Carbotta
  • Laura Giacomelli
  • Stefano Arcieri
  • Massimo Vergine
  • Massimo Monti
  • Salvatore UlisseEmail author


The skin is the largest organ of the body, at the boundary with the outside environment. Primarily, it provides a physical and chemical barrier against external insults, but it can act also as immune organ because it contains a whole host of immune-competent cells of both the innate and the adaptive immune systems, which cooperate in eliminating invading pathogens following tissue injury. On the other hand, improper skin immune responses lead to autoimmune skin diseases (AISD), such as pemphigus, bullous pemphigoid, vitiligo, and alopecia. Although the interplay among genetic, epigenetic, and environmental factors has been shown to play a major role in AISD etiology and progression, the molecular mechanisms underlying disease development are far from being fully elucidated. In this context, epidemiological studies aimed at defining the association of different AISD with other autoimmune pathologies revealed possible shared molecular mechanism(s) responsible for disease progression. In particular, over the last decades, a number of reports have highlighted a significant association between thyroid diseases (TD), mainly autoimmune ones (AITD), and AISD. Here, we will recapitulate the epidemiology, clinical manifestations, and pathogenesis of the main AISD, and we will summarize the epidemiological evidence showing the associations with TD as well as possible molecular mechanism(s) underlying TD and AISD pathological manifestations.


Skin Epidermis Thyroid Autoimmunity Epidemiology Pathophysiology 


Compliance with Ethical Standards

Conflict of Interest

Authors declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies on animal or human participants performed by any of the authors.


  1. 1.
    Vanderpump MPJ. The epidemiology of thyroid disease. Br Med Bull. 2011;99:39–51.Google Scholar
  2. 2.
    Paschke R. Molecular pathogenesis of nodular goiter. Langenbecks Arch Surg. 2011;396:1127–36.Google Scholar
  3. 3.
    Yoo WS, Chung HK. Recent advances in autoimmune thyroid diseases. Endocrinol Metab. 2016;31:379–85.Google Scholar
  4. 4.
    Stassi G, De Maria R. Autoimmune thyroid disease: new model of cell death in autoimmunity. Nat Rev Immunol. 2003;2:195–204.Google Scholar
  5. 5.
    Gharib M, Gharib H. Guidelines for the diagnosis and management of thyroid nodules. Thyroid Int. 2011;1:3–11.Google Scholar
  6. 6.
    Nikiforov YE, Biddinger PW, Thompson LDR. Diagnostic pathology and molecular genetics of the thyroid. Philadelphia: Wolters Kluwer – Lippincott Williams & Wilkins; 2009.Google Scholar
  7. 7.
    Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14:174–80.Google Scholar
  8. 8.
    Hasham A, Tomer Y. Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol Res. 2012;54:204–13.Google Scholar
  9. 9.
    Shukla SK, Singh G, Ahmad S, Pant P. Infections, genetic and environmental factors in pathogenesis of autoimmune thyroid diseases. Microb Pathog. 2018;116:279–88.Google Scholar
  10. 10.
    Ajjan RA, Weetman AP. The pathogenesis of Hashimoto’s thyroiditis: further developments in our understanding. Horm Metab Res. 2015;47:702–10.Google Scholar
  11. 11.
    Brix TH, Kyvik KO, Hegedus L. A population-based study of chronic autoimmune hypothyroidism in Danish twins. J Clin Endocrinol Metab. 2000;85:536–9.Google Scholar
  12. 12.
    Eschler DC, Hasham A, Tomer Y. Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allergy Immunol. 2011;41:190–7.Google Scholar
  13. 13.
    Vaccaro M, Guarneri F, Borgia F, Cannavò SP, Benvenga S. Association of lichen sclerosus and autoimmune thyroiditis: possible role of Borrelia burgdorferi? Thyroid. 2002;12:1147–8.Google Scholar
  14. 14.
    Benvenga S, Guarneri F. Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord. 2016;17:485–98.Google Scholar
  15. 15.
    Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72.Google Scholar
  16. 16.
    Cichorek M, Wachulska M, Stasiewicz A, Tymińska A. Skin melanocytes: biology and development. Postepy Dermatol Alergol. 2013:30:30–41.Google Scholar
  17. 17.
    Richmond JM, Harris JE. Immunology and skin in health and disease. Cold Spring Harb Perspect Med. 2014;4:a015339.Google Scholar
  18. 18.
    Iizuka H. Epidermal turnover time. Journal of Dermatological Science. 1994;8:215–7.Google Scholar
  19. 19.
    Sriram G, Bigliardi PL, Bigliardi-Qi M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol. 2015;94:483–512.Google Scholar
  20. 20.
    Brohem CA, Cardeal LB, Tiago M, Soengas MS, Barros SB, Maria-Engler SS. Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res. 2011;24:35–50.Google Scholar
  21. 21.
    Martel JL, Badri T. Anatomy, Head, Hair, Follicle. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-2018 Jan 10.)Google Scholar
  22. 22.
    McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Medicine. 2006;3:e297.Google Scholar
  23. 23.
    Ávalos-Díaz E, Herrera Esparza R. Dermatological autoimmune diseases. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, Levy RA, Cervera R, editors. Autoimmunity: From Bench to Bedside. Bogota: El Rosario: University Press; 2013. p. 597–610.Google Scholar
  24. 24.
    Sticherling M. Psoriasis and autoimmunity. Autoimmun Rev. 2016;15:1167–70.Google Scholar
  25. 25.
    Bruserud Ø, Oftedal BE, Wolff AB, Husebye ES. AIRE-mutations and autoimmune disease. Curr Opin Immunol. 2016;43:8–15.Google Scholar
  26. 26.
    Michels AW, Gottlieb PA. Autoimmune polyglandular syndromes. Nat Rev Endocrinol. 2010;6:270–7.Google Scholar
  27. 27.
    Kahaly GJ, Frommer L. Polyglandular autoimmune syndromes. J Endocrinol Invest. 2018;41:91–8.Google Scholar
  28. 28.
    Obermayer-Straub P, Manns MP. Autoimmune polyglandular syndromes. Baillieres Clin Grastroenterol. 1998;12:293–315.Google Scholar
  29. 29.
    Betterle C, Zanchetta R. Update on autoimmune polymdocrine syndromes (APS). Acta Biomed. 2003;74:9–33.Google Scholar
  30. 30.
    Sheehan MT, Islam R. Silent thyroiditis, isolated corticotropin deficiency, and alopecia universalis in a patient with ulcerative colitis and elevated levels of plasma factor VIII: an unusual case of autoimmune polyglandular syndrome type 3. Endocr Pract. 2009;15:138–42.Google Scholar
  31. 31.
    Di Zenzo G, Della Torre R, Zambruno G, Borradori L. Bullous pemphigoid: from the clinic to the bench. Clin Dermatol. 2012;30:3–16.Google Scholar
  32. 32.
    Cozzani E, Gasparini G, Burlando M, Drago F, Parodi A. Atypical presentations of bullous pemphigoid: Clinical and immunopathological aspects. Autoimmun Rev. 2015;14:438–45.Google Scholar
  33. 33.
    Sävervall C, Sand FL, Thomsen SF. Pemphigoid gestationis: current perspectives. Clin Cosmet Investig Dermatol. 2017;10:441–9.Google Scholar
  34. 34.
    Roujeau J-C, Lok C, Bastuji-Garin S, Mhalla S, Enginger V, Bernard P. High risk of death in elderly patients with extensive bullous pemphigoid. Arch Dermatol. 1998;134:465–9.Google Scholar
  35. 35.
    Colbert RL, Allen DM, Eastwood D, Fairley JA. Mortality rate of bullous pemphigoid in a US Medical Center. J Incest Dermatol. 2004;122:1091–5.Google Scholar
  36. 36.
    Jonkman MF, de Jong MC, Heeres K, Pas HH, van der Meer JB, Owaribe K, et al. 180-kD bullous pemphigoid antigen (BP180) is deficient in generalized atrophic benign epidermolysis bullosa. J Clin Invest. 1995;95:1345–52.Google Scholar
  37. 37.
    Groves RW, Liu L, Dopping-Hepenstal PJ, Markus HS, Lovell PA, Ozoemena L, et al. A homozygous nonsense mutation within the dystonin gene coding for the coiled-coil domain of the epithelial isoform of BPAG1 underlies a new subtype of autosomal recessive epidermolysis bullosa simplex. J Invest Dermatol. 2010;130:1551–7.Google Scholar
  38. 38.
    Büdinger L, Borradori L, Yee C, Eming R, Ferencik S, Grosse-Wilde H, et al. Identification and characterization of autoreactive T cell responses to bullous pemphigoid antigen 2 in patients and healthy controls. J Clin Invest. 1998;102:2082–9.Google Scholar
  39. 39.
    Delgado JC, Turbay D, Yunis EJ, Yunis JJ, Morton ED, Bhol K, et al. A common major histocompatibility complex class II allele HLA-DQB1* 0301 is present in clinical variants of pemphigoid. Proc Natl Acad Sci U S A. 1996;93:8569–71.Google Scholar
  40. 40.
    Bastuji-Garin S, Joly P, Picard-Dahan C, Bernard P, Vaillant L, Pauwels C, et al. Drugs associated with bullous pemphigoid. A case-control study. Arch Dermatol. 1996;132:272–6.Google Scholar
  41. 41.
    Bastuji-Garin S, Joly P, Lemordant P, Sparsa A, Bedane C, Delaporte E, et al. Ingen-Housz-Oro S, Maillard H, Pauwels C, Picard-Dahan C, Dutronc Y, Richard MA; French Study Group for Bullous Diseases. Risk factors for bullous pemphigoid in the elderly: a prospective case-control study. J Invest Dermatol. 2011;131:637–43.Google Scholar
  42. 42.
    Ljubojevic S, Lipozenčić J. Autoimmune bullous diseases associations. Clin Dermatol. 2012;30:17–33.Google Scholar
  43. 43.
    Callen JP, McCall MW. Bullous pemphigoid and Hashimoto’s thyroiditis. J am Acad Dermatol. 1981;5:558–60.Google Scholar
  44. 44.
    Fiorucci MC, Cozzani E, Casu M, Murialdo G, Parodi A, Rebora A. Bullous pemphigoid and Graves' disease: an association between skin and thyroid autoimmunity. Acta Derm Venereol. 2005;85:560–1.Google Scholar
  45. 45.
    How J, Bewsher PD, Stankler L. Bullous pemphigoid, polymyalgia rheumatica and thyroid disease. Br J Dermatol. 1980;103:201–4.Google Scholar
  46. 46.
    Ameri P, Cinotti E, Mussap M, Murialdo G, Parodi A, Cozzani E. Association of pemphigus and bullous pemphigoid with thyroid autoimmunity in Caucasian patients. J Am Acad Dermatol. 2013;68:687–9.Google Scholar
  47. 47.
    Gupta R, Woodley DT, Chen M. Epidermolysis bullosa acquisita. Clin Dermatol. 2012;30:60–9.Google Scholar
  48. 48.
    Schmidt E, Höpfner B, Chen M, Kuhn C, Weber L, Bröcker EB, et al. Childhood epidermolysis bullosa acquisita: a novel variant with reactivity to all three structural domains of type VII collagen. Br J Dermatol. 2002;147:592–7.Google Scholar
  49. 49.
    Chen M, Kim GH, Prakash L, Woodley DT. Epidermolysis bullosa acquisita: autoimmunity to anchoring fibril collagen. Autoimmunity. 2012;45:91–101.Google Scholar
  50. 50.
    Roenigk HH, Ryan JG, Bergfeld WF. Epidermolysis bullosa acquisita: Report of three cases and review of all published cases. Arch Dermatol. 1971;103(1):10.Google Scholar
  51. 51.
    Chen M, O'Toole EA, Sanghavi J, Mahmud N, Kelleher D. Type VII collagen exists in human intestine and serves as an antigenic target in patients with inflammatory bowel disease. J Invest Dermatol. 1997;108:542.Google Scholar
  52. 52.
    Oostingh GJ, Sitaru C, Zillikens D, Kromminga A, Lührs H, Kromminga A, et al. Subclass distribution of type VII collagen-specific autoantibodies in patients with inflammatory bowel disease. J Dermatol Sci. 2005;37:182–4.Google Scholar
  53. 53.
    Kakar R, Paugh H, Jaworsky C. Linear IgA bullous disease presenting as toxic epidermal necrolysis: a case report and review of the literature. Dermatology. 2013;227:209–13.Google Scholar
  54. 54.
    Zenke Y, Nakano T, Eto H, Koga H, Hashimoto T. A case of vancomycin-associated linear IgA bullous dermatosis and IgA antibodies to the a3 subunit of laminin-332. Br J Dermatol. 2014;170:965–9.Google Scholar
  55. 55.
    Tashima S, Konishi K, Koga H, Hashimoto T. A case of vancomycin-induced linear IgA bullous dermatosis with circulating IgA antibodies to the NC16a domain of BP180. Int J Dermatol. 2014;53:e207–9.Google Scholar
  56. 56.
    Haeberle MT, Callen JP. Linear IgA Dermatosis. Updated: Apr 28, 2017. Emedicine. Available at: Hashimoto thyroiditistp:// Accessed: February 14, 2018.
  57. 57.
    Mobacken H, Kastrup W, Ljunghall K, Löfberg H, Nilsson LA, Svensson A, et al. Linear IgA dermatosis: a study of ten adult patients. Acta Derm Venereol. 1983;63:123–8.Google Scholar
  58. 58.
    Klein PA, Callen JP. Drug-induced linear IgA bullous dermatosis after vancomycin discontinuance in a patient with renal insufficiency. J Am Acad Dermatol. 2000;42:316–23.Google Scholar
  59. 59.
    Pereira AR, Moura LH, Pinheiro JR, Pasin VP, Enokihara MM, Porro AM. Vancomycin-associated linear IgA disease mimicking toxic epidermal necrolysis. An Bras Dermatol. 2016;91:35–8.Google Scholar
  60. 60.
    Porter WM, Hardman CM, Leonard JN, Fry L. Sarcoidosis in a patient with linear IgA disease. Clin Exp Dermatol. 1999;24:67–70.Google Scholar
  61. 61.
    Yang JY, Park I, Kim SK. Concurrent Linear Immunoglobulin A Dermatosis, Hashimoto Thyroiditis, and Immunoglobulin A Nephropathy in an Adult. Ann Dermatol. 2017;29:226–8.Google Scholar
  62. 62.
    Fry L, Keir P, McMinn RM, Cowan JD, Hoffbrand AV. Small-intestinal structure and function and haematological changes in dermatitis herpetiformis. Lancet. 1967;2:729–33.Google Scholar
  63. 63.
    Reunala T, Salmi TT, Hervonen K. Dermatitis herpetiformis: pathognomonic transglutaminase IgA deposits in the skin and excellent prognosis on a gluten-free diet. Acta Derm Venereol. 2015;95:917–22.Google Scholar
  64. 64.
    Reunala T, Collin P. Diseases associated with dermatitis herpetiformis. Br J Dermatol. 1997;136:315–8.Google Scholar
  65. 65.
    Kaplan RP, Callen JP. Dermatitis herpetiformis: autoimmune disease associations. Clin Dermatol. 1991;9:347–60.Google Scholar
  66. 66.
    Zettinig G, Weissel M, Flores J, Dudczak R, Vogelsang H. Dermatitis herpetiformis is associated with atrophic but not with goitrous variant of Hashimoto's thyroiditis. Eur J Clin Invest. 2000;30:53–7.Google Scholar
  67. 67.
    Stanley JR, Amagai M. Autoimmune bullous diseases: historical prospective. J Invest Dermatol. 2008;128:E16–8.Google Scholar
  68. 68.
    Anhalth GJ, Labib RS, Voorhees JJ, Beals TF, Diaz LA. Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. New Engl J Med. 1982;306:1189–96.Google Scholar
  69. 69.
    Zakka LR, Keskin DB, Reche P, Ahmed AR. Relationship between target antigens and major histocompatibility complex (MHC) class II genes in producing two pathogenic antibodies simultaneously. Clin Exp Immunol. 2010;162:224–36.Google Scholar
  70. 70.
    De Stefano GM, Christano AM. The genetics of human skin disease. Cold Spring Harb Perspect Med. 2014;4:a015172.Google Scholar
  71. 71.
    Nancy AL, Yehuda S. Prediction and prevention of autoimmune skin disorders. Arch Dermatol Res. 2009;301:57–64.Google Scholar
  72. 72.
    Callen JP. Internal disorders associated with bullous disease of the skin. A critical review. J Am Acad Dermatol. 1980;3:107–19.Google Scholar
  73. 73.
    Heelan K, Mahar AL, Walsh S, Shear NH. Pemphigus and associated comorbidities: a cross-sectional study. Clin Exp Dermatol. 2015;40:593–9.Google Scholar
  74. 74.
    Leshem YA, Katzenelson V, Yosipovitich G, Mimouni D. Autoimmune diseases in patients with pemphigus and their first-degree relatives. Int J Dermatol. 2011;50:827–31.Google Scholar
  75. 75.
    Kavala M, Kural E, Kocaturk E, Zindanci I, Turkoglu Z, Can B. The evaluation of thyroid diseases in patients with pemphigus vulgaris. Scientific World Journal. 2012;2012:146897.Google Scholar
  76. 76.
    Ansar A, Farshchian M, Farahnaki S, Farshchian M. Thyroid autoimmunity in Iranian patients with pemphigus vulgaris. J Eur Acad Dermatol Venereol. 2009;23:719–20.Google Scholar
  77. 77.
    Pitoia F, Moncet D, Glorio R, Graciela Diaz A, Rodriguez Costa G, Carbia S, et al. Prevalence of thyroid autoimmunity in patients with pemphigus vulgaris. Medicina (B Aires). 2005;65:307–10.Google Scholar
  78. 78.
    Daneshpazhooh M, Behjati J, Hashemi P, Shamohammadi S, Mortazavi H, Nazemi MJ, et al. Thyroid autoimmunity and pemphigus vulgaris: is there a significant association? J Am Acad Dermatol. 2010;62:349–51.Google Scholar
  79. 79.
    Nisihara RM, de Bem RS, Hausberger R, Roxo VS, Pavoni DP, Petzl-Erler ML, et al. Prevalence of autoantibodies in patients with endemic pemphigus foliaceus (fogo selvagem). Arch Dermatol Res. 2003;295:133–7.Google Scholar
  80. 80.
    Baldini E, Odorisio T, Sorrenti S, Catania A, Tartaglia F, Carbotta G, et al. Vitiligo and autoimmune thyroid disorders. Front Endocrinol (Lausanne). 2017;8:290.Google Scholar
  81. 81.
    Kim YC, Kim YJ, Kang HY, Sohn S, Lee ES. Histopathologic features in vitiligo. Am J Dermatopathol. 2008;30:112–6.Google Scholar
  82. 82.
    Ferrari SM, Fallahi P, Santaguida G, Virili C, Ruffilli I, Ragusa F, et al. Circulating CXCL10 is increased in non-segmental vitiligo, in presence or absence of autoimmune thyroiditis. Autoimmun Rev. 2017;16:946–50.Google Scholar
  83. 83.
    Antonelli A, Ferrari SM, Fallahi P. The role of the Th1 chemokine CXCL10 in vitiligo. Ann Transl Med. 2015;3(Suppl 1):S16.Google Scholar
  84. 84.
    Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CC, et al. Vitiligo global issue consensus conference panelists. Pigment Cell Melanoma Res. 2012;25:E1–13.Google Scholar
  85. 85.
    Pandve HT. Vitiligo. is it just a dermatological disorder? Indian J Dermatol. 2008;53:40–1.Google Scholar
  86. 86.
    Lai Y, Yew YW, Kennedy C, Schwartz RA. Vitiligo and depression: a systematic review and meta-analysis of observational studies. Br J Dermatol. 2016;177:708–18.Google Scholar
  87. 87.
    Patel S, Rauf A, Khan H, Meher BR, ul Hassan SS. A holistic review on the autoimmune disease vitiligo with emphasis on the casual factors. Biomed Pharmacother. 2017;92:501–8.Google Scholar
  88. 88.
    Czajkowski R, Męcińska-Jundziłł K. Current aspects of vitiligo genetics. Postepy Dermatol Alergol. 2014;31:247–55.Google Scholar
  89. 89.
    Ezzedine K, Eleftheriadou V, Whitton M, van Geel N. Vitiligo. Lancet. 2015;386:74–84.Google Scholar
  90. 90.
    Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE. Vitiligo Working Group. New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol. 2017;77:1–13.Google Scholar
  91. 91.
    Strassner JP, Harris JE. Understanding mechanisms of autoimmunity through translational research in vitiligo. Curr Opin Immunol. 2016;43:81–8.Google Scholar
  92. 92.
    Jin Y, Ferrara T, Gowan K, Holcomb C, Rastrou M, Erlich HA, et al. Next-generation DNA re-sequencing identifies common variants of TYR and HLA-A that modulate the risk of generalized vitiligo via antigen presentation. J Invest Dermatol. 2012;132:1730–3.Google Scholar
  93. 93.
    Manolache L, Benea V. Stress in patients with alopecia areata and vitiligo. J Eur Acad Dermatol Venereol. 2007;21:921–8.Google Scholar
  94. 94.
    Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigement Cell Melanoma Res. 2003;16:208–14.Google Scholar
  95. 95.
    Cunliffe WJ, Hall R, Newell DJ, Stevenson CJ. Vitiligo, thyroid disease and autoimmunity. Br J Dermatol. 1968;80:135–9.Google Scholar
  96. 96.
    Gill L, Zarbo A, Isedeh P, Jacobsen G, Lim HW, Hamzavi I. Comorbid autoimmune diseases in patients with vitiligo: a cross-sectional study. J Am Acad Dermatol. 2016;74:295–302.Google Scholar
  97. 97.
    Laberge G, Mailloux CM, Gowan K, Holland P, Bennett DC, Fain PR, et al. Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo. Pigment Cell Res. 2005;18:300–5.Google Scholar
  98. 98.
    Sheth VM, Guo Y, Qureshi AA. Comorbidities associated with vitiligo: a ten-year retrospective study. Dermatology. 2013;227:311–5.Google Scholar
  99. 99.
    Amerio P, Di Rollo D, Carbone A, Auriemma M, Marra ME, De Remigis P, et al. Polyglandular autoimmune diseases in a dermatological clinical setting: vitiligo-associated autoimmune diseases. Eur J Dermatol. 2010;20:354–8.Google Scholar
  100. 100.
    Narita T, Oiso N, Fukai K, Kabashima K, Kawada A, Suzuki T. Generalized vitiligo and associated autoimmune diseases in Japanese patients and their families. Allergol Int. 2011;60:505–8.Google Scholar
  101. 101.
    Fallahi P, Ferrari SM, Ruffilli I, Elia G, Biricotti M, Vita R, et al. The association of other autoimmune diseases in patients with autoimmune thyroiditis: Review of the literature and report of a large series of patients. Autoimmun Rev. 2016;15:1125–8.Google Scholar
  102. 102.
    Ruggeri RM, Trimarchi F, Giuffrida G, Certo R, Cama E, Campennì A, et al. Autoimmune comorbidities in Hashimoto's thyroiditis: different patterns of association in adulthood and childhood/adolescence. Eur J Endocrinol. 2017;176:133–41.Google Scholar
  103. 103.
    Saylam Kurtipek G, Cihan FG, Erayman Demirbaş Ş, Ataseven A. The Frequency of autoimmune thyroid disease in alopecia areata and vitiligo patients. Biomed Res Int. 2015;2015:435947.Google Scholar
  104. 104.
    Nejad SB, Qadim HH, Nazeman L, Fadaii R, Goldust M. Frequency of autoimmune diseases in those suffering from vitiligo in comparison with normal population. Pak J Biol Sci. 2013;16:570–4.Google Scholar
  105. 105.
    Colucci R, Lotti F, Dragoni F, Arunachalam M, Lotti T, Benvenga S, et al. High prevalence of circulating autoantibodies against thyroid hormones in vitiligo and correlation with clinical and historical parameters of patients. Br J Dermatol. 2014;171:786–98.Google Scholar
  106. 106.
    Lazzeri L, Colucci R, Cammi A, Dragoni F, Moretti S. Adult onset vitiligo: multivariate analysis suggests the need for a thyroid screening. Biomed Res Int. 2016;2016:8065765.Google Scholar
  107. 107.
    Bae JM, Lee JH, Yun JS, Han B, Han TY. Vitiligo and overt thyroid diseases: A nationwide population-based study in Korea. J Am Acad Dermatol. 2017;76:871–8.Google Scholar
  108. 108.
    Dash R, Mohapatra A, Manjunathswamy BS. Anti-thyroid peroxidase antibody in vitiligo: a prevalence study. J Thyroid Res. 2015;2015:192736.Google Scholar
  109. 109.
    Vrijman C, Kroon MW, Limpens J, Leeflang MM, Luiten RM, van der Veen JP, et al. The prevalence of thyroid disease in patients with vitiligo: a systematic review. Br J Dermatol. 2012;167:1224–35.Google Scholar
  110. 110.
    Colucci R, Lotti F, Arunachalam M, Lotti T, Dragoni F, Benvenga S, et al. Correlation of serum thyroid hormones autoantibodies with self-reported exposure to thyroid disruptors in a group of nonsegmental vitiligo patients. Arch Environ Contam Toxicol. 2015;69:181–90.Google Scholar
  111. 111.
    Shong YK, Kim JA. Vitiligo in autoimmune thyroid disease. Thyroidology. 1991;3:89–91.Google Scholar
  112. 112.
    Artantaş S, Gül U, Kiliç A, Güler S. Skin findings in thyroid diseases. Eur J Intern Med. 2009;20:158–61.Google Scholar
  113. 113.
    Vita R, Santaguida MG, Virili C, Segni M, Galletti M, Mandolfino M, et al. Serum thyroid hormone antibodies are frequent in patients with polyglandular autoimmune syndrome type 3, particularly in those who require thyroxine treatment. Front Endocrinol. 2017;8:212.Google Scholar
  114. 114.
    Kaplan AP, Greaves M. Pathogenesis of chronic urticaria. Clin Exp Allergy. 2009;39:777–87.Google Scholar
  115. 115.
    Powell RJ, Du Toit GL, Siddique N, Leech SC, Dixon TA, Clark AT, et al. British Society for Allergy and Clinical Immunology (BSACI). BSACI guidelines for the management of chronic urticaria and angio-oedema. Clin Exp Allergy. 2007;37(5):631–50.Google Scholar
  116. 116.
    Konstantinou GN, Asero R, Maurer M, Sabroe RA, Schmid-Grendelmeier P, Grattan CE. EAACI/GA(2)LEN task force consensus report: the autologous serum skin test in urticaria. Allergy. 2009;64:1256–68.Google Scholar
  117. 117.
    Tedeschi A, Cottini M, Asero R. Simultaneous occurrence of chronic autoimmune urticaria and non-allergic asthma: a common mechanism? Eur Ann Allergy Clin Immunol. 2009;41:56–9.Google Scholar
  118. 118.
    Confino-Cohen R, Chodick G, Shalev V, Leshno M, Kimhi O, Goldberg A. Chronic urticaria and autoimmunity: associations found in a large population study. J Allergy Clin Immunol. 2012;129:1307–13.Google Scholar
  119. 119.
    Criado PR, Criado RF, Maruta CW, Reis VM. Chronic urticaria in adults: state-of-the-art in the new millennium. An Bras Dermatol. 2015;90:74–89.Google Scholar
  120. 120.
    Kolkhir P, Borzova E, Grattan C, Asero R, Pogorelov D, Maurer M. Autoimmune comorbidity in chronic spontaneous urticaria: A systematic review. Autoimmun Rev. 2017;16:1196–208.Google Scholar
  121. 121.
    Rottem M. Chronic urticaria and autoimmune thyroid disease: is there a link? Autoimmun Rev. 2003;2:69–72.Google Scholar
  122. 122.
    Bagnasco M, Minciullo PL, Saraceno GS, Gangemi S, Benvenga S. Urticaria and thyroid autoimmunity. Thyroid. 2011;21:401–10.Google Scholar
  123. 123.
    Dreskin SC, Andrews KY. The thyroid and urticaria. Curr Opin Allergy Clin Immunol. 2005;5:408–12.Google Scholar
  124. 124.
    Kolkhir P, Metz M, AltricHashimoto thyroiditiser S, Maurer M. Comorbidity of chronic spontaneous urticaria and autoimmune thyroid diseases: A systematic review. Allergy. 2017;72:1440–60.Google Scholar
  125. 125.
    O'Donnell BF, Francis DM, Swana GT, Seed PT, Kobza Black A, Greaves MW. Thyroid autoimmunity in chronic urticaria. Br J Dermatol. 2005;153:331–5.Google Scholar
  126. 126.
    Ruggeri RM, Imbesi S, Saitta S, Campennì A, Cannavò S, Trimarchi F, et al. Chronic idiopathic urticaria and Graves' disease. J Endocrinol Invest. 2013;36:531–6.Google Scholar
  127. 127.
    Lanigan SW, Short P, Moult P. The association of chronic urticaria and thyroid autoimmunity. Clin Exp Dermatol. 1987;12:335–8.Google Scholar
  128. 128.
    Hordinsky MK. Overview of alopecia areata. J Invest Dermatol. 2013;16:S13–5.Google Scholar
  129. 129.
    Spano F, Donovan JC. Alopecia areata. Part 1:pathogenesis, diagnosis, and prognosis. Can Fam Physician. 2015;61:751–5.Google Scholar
  130. 130.
    Bodemer C, Peuchmaur M, Fraitaig S, Chatenoud L, Brousse N, De Prost Y. Role of cytotoxic T cells in chronic alopecia areata. J Invest Dermatol. 2000;114:112–6.Google Scholar
  131. 131.
    Gilhar A, Etzioni A, Paus R. Alopecia areata. N Engl J Med. 2012;366:1515–25.Google Scholar
  132. 132.
    Bertolini M, Zilio F, Rossi A, Kleditzsch P, Emelianov VE, Gilhar A, et al. Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLoS One. 2014;9:e94260.Google Scholar
  133. 133.
    Wang EH, Yu M, Breitkopf T, Akhoundsadegh N, Wang X, Shi FT, et al. Identification of autoantigen epitopes in alopecia areata. J Invest Dermatol. 2016;136:1617–26.Google Scholar
  134. 134.
    Bertolini M, Rossi A, Paus R. Cover Image: Are melanocyte-associated peptides the elusive autoantigens in alopecia areata? Br J Dermatol. 2017;176:1106.Google Scholar
  135. 135.
    Islam N, Leung PS, Huntley AC, Gershwin ME. The autoimmune basis of alopecia areata: a comprehensive review. Autoimmun Rev. 2015 Feb;14(2):81–9.Google Scholar
  136. 136.
    Thomas EA, Kadyan RS. Alopecia areata and autoimmunity: a clinical study. Indian J Dermatol. 2008;53:70–4.Google Scholar
  137. 137.
    Patel D, Li P, Bauer AJ, Castelo-Soccio C. Screening guidelines for thyroid function in children with alopecia areata. JAMA Dermatol. 2017;153:1307–10.Google Scholar
  138. 138.
    Huang KP, Mullangi S, Guo Y, Qureshi AA. Autoimmune, atopic, and mental health comorbidity conditions associated with alopecia areata in the United Stayes. JAMA Dermatol. 2013;149:789–94.Google Scholar
  139. 139.
    Baars MP, Greebe RJ, Pop VJM. High prevalence of thyroid peroxidase antibodies in patients with alopecia areata. J Eur Acad Dermatol Venereol. 2013;27:e136-47.Google Scholar
  140. 140.
    Conic RZ, Miller R, Piliang M, Bergfeld W, Mesinkovska NA. Comorbidities in patients with alopecia areata. J Am Acad Dermatol. 2017;76:755–7.Google Scholar
  141. 141.
    Bin Saif GA. Severe subtype of alopecia areata is highly associated with thyroid autoimmunity. Saudi Med J. 2016;37:656–61.Google Scholar
  142. 142.
    You HR, Kim SJ. Factors associated with severity of alopecia areata. Ann Dermatol. 2017;29:565–70.Google Scholar
  143. 143.
    Guran T, Bircan R, Turan S, Bereket A. Alopecia: association with resistance to thyroid hormone. J Pediatr Endocrinol Metab. 2009;22:1075–81.Google Scholar
  144. 144.
    Maatough A, Whitfield GK, Brook L, Hsieh D, Palade P, Hsieh JC. Human Hairless Protein Roles in Skin/Hair and Emerging Connections to Brain and Other Cancers. J Cell Biochem. 2018;119:69–80.Google Scholar
  145. 145.
    Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133:377–85.Google Scholar
  146. 146.
    Karczewski J, Dobrowolska A, Rychlewska-Hańczewska A, Adamski Z. New insights into the role of T cells in pathogenesis of psoriasis and psoriatic arthritis. Autoimmunity. 2016;49:435–50.Google Scholar
  147. 147.
    Alwan W, Nestle FO. Pathogenesis and treatment of psoriasis: exploiting pathophysiological pathways for precision medicine. Clin Exp Rheumatol. 2015;33(5 Suppl 93):S2–6.Google Scholar
  148. 148.
    Farber EM, Nall ML. The natural history of psoriasis in 5,600 patients. Dermatologica. 1974;148:1–18.Google Scholar
  149. 149.
    Schmitt-Egenolf M, Eiermann TH, Boehncke WH, Ständer M, Sterry W. Familial juvenile onset psoriasis is associated with the human leukocyte antigen (HLA) class I side of the extended haplotype Cw6-B57-DRB1*0701-DQA1*0201-DQB1*0303: a population- and family-based study. J Invest Dermatol. 1996;106:711–4.Google Scholar
  150. 150.
    Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55.Google Scholar
  151. 151.
    Tsoi LC, Spain SL, Ellinghaus E, Stuart PE, Capon F, Knig J, et al. Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nat Commun. 2015;6:7001.Google Scholar
  152. 152.
    Yin X, Low HQ, Wang L, Li Y, Ellinghaus E, Han J, et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun. 2015;6:6916.Google Scholar
  153. 153.
    Khan SR, Bano A, Wakkee M, Korevaar TIM, Franco OH, Nijsten TEC, et al. The association of autoimmune thyroid disease (AITD) with psoriatic disease: a prospective cohort study, systematic review and meta-analysis. Eur J Endocrinol. 2017;177:347–59.Google Scholar
  154. 154.
    Wu JJ, Nguyen TU, Poon KY, Herrinton LJ. The association of psoriasis with autoimmune diseases. J Am Acad Dermatol. 2012;67:924–30.Google Scholar
  155. 155.
    Antonelli A, Delle Sedie A, Fallahi P, Ferrari SM, Maccheroni M, Ferrannini E, et al. High prevalence of thyroid autoimmunity and hypothyroidism in patients with psoriatic arthritis. J Rheumatol. 2006;33:2026–8.Google Scholar
  156. 156.
    Peluso R, Lupoli GA, Del Puente A, Iervolino S, Bruner V, Lupoli R, et al. Prevalence of thyroid autoimmunity in patients with spondyloarthropathies. J Rheumatol. 2011;38:1371–7.Google Scholar
  157. 157.
    Tsai TF, Wang TS, Hung ST, Tsai PI, Schenkel B, Zhang M, et al. Epidemiology and comorbidities of psoriasis patients in a national database in Taiwan. J Dermatol Sci. 2011;63:40–6.Google Scholar
  158. 158.
    Arakawa A, Siewert K, Stöhr J, Besgen P, Kim SM, Rühl G, et al. Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med. 2015;212:2203–12.Google Scholar
  159. 159.
    Weetman AP. The genetics of autoimmune thyroid disease. Horm Metab Res. 2009;41:421–5.Google Scholar
  160. 160.
    Spritz RA. Shared genetic relationships underlying generalized vitiligo and autoimmune thyroid disease. Thyroid. 2010;20:745–54.Google Scholar
  161. 161.
    Simmonds MJ. GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis. Nat Rev Endocrinol. 2013;9:277–87.Google Scholar
  162. 162.
    Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44:676–80.Google Scholar
  163. 163.
    Medici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA, et al. Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet. 2014;10:e1004123.Google Scholar
  164. 164.
    Alkhateeb A, Jarun Y, TasHashimoto thyroiditisoush R. Polymorphisms in NLRP1 gene and susceptibility to autoimmune thyroid disease. Autoimmunity. 2013;46:215–21.Google Scholar
  165. 165.
    Alkhateeb A, Stetler GL, Old W, Talbert J, Uhlhorn C, Taylor M, et al. Mapping of an autoimmunity susceptibility locus (AIS1) to chromosome 1p31.3-p32.2. Hum Mol Genet. 2002;11:661–7.Google Scholar
  166. 166.
    Fain PR, Gowan K, LaBerge GS, Alkhateeb A, Stetler GL, Talbert J, et al. A genome wide screen for generalized vitiligo: confirmation of AIS1 on chromosome 1p31 and evidence for additional susceptibility loci. Am J Hum Genet. 2003;72:1560–4.Google Scholar
  167. 167.
    Spritz RA, Gowan K, Bennett DC, Fain PR. Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am J Hum Genet. 2004;74:188–91.Google Scholar
  168. 168.
    Schunter JA, Löffler D, Wiesner T, Kovacs P, Badenhoop K, Aust G, et al. Körner A. A novel FoxD3 variant is associated with vitiligo and elevated thyroid auto-antibodies. J Clin Endocrinol Metab. 2015;100:E1335–42.Google Scholar
  169. 169.
    Gong Q, Li X, Gong Q, Zhu W, Song G, Lu Y. Hashimoto’s thyroiditis could be secondary to vitiligo: the possibility of antigen crossover and oxidative stress between the two diseases. Arch Dermatol Res. 2016;308:277–81.Google Scholar
  170. 170.
    Slominski A, Wortsman J, Kohn L, Ain KB, Venkataraman GM, Pisarchik A, et al. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin. J Invest Dermatol. 2002;119:1449–55.Google Scholar
  171. 171.
    Cianfarani F, Baldini E, Cavalli A, Marchioni E, Lembo L, Teson M, et al. TSH receptor and thyroid-specific gene expression in human skin. J Invest Dermatol. 2010;130:93–101.Google Scholar
  172. 172.
    Ellerhorst JA, Sendi-Naderi A, Johnson MK, Cooke CP, Dang SM, Diwan AH. Human melanoma cells express functional receptors for thyroid-stimulating hormone. Endocr Relat Cancer. 2006;13:1269–77.Google Scholar
  173. 173.
    Pattwell Dm LKJ, Watson RE, Paus R. HaCaT keratinocytes express functionalreceptors for thyroid-stimulating hormone. J Dermatol Sci. 2010;59:52–5.Google Scholar
  174. 174.
    Bodó E, Kany B, Gáspár E, Knüver J, Kromminga A, Ramot Y, et al. Thyroid-stimulating hormone, a novel, locally produced modulator of human epidermal functions, is regulated by thyrotropin-releasing hormone and thyroid hormones. Endocrinology. 2010;151:1633–42.Google Scholar
  175. 175.
    Vidali S, Knuever J, Lerchner J, Giesen M, Bíró T, Klinger M, et al. Hypothalamic-pituitary-thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles. J Invest Dermatol. 2014;134:33–42.Google Scholar
  176. 176.
    Bodó E, Kromminga A, Bíró T, Borbíró I, Gáspár E, Zmijewski MA, et al. Human female hair follicles are a direct, nonclassical target for thyroid-stimulating hormone. J Invest Dermatol. 2009;129:1126–39.Google Scholar
  177. 177.
    Silvares MR, Fortes MR, Nascimento RA, Padovani CR, Miot HA, Nogueira CR, et al. Thyrotropin receptor gene expression in the association between chronic spontaneous urticaria and Hashimoto's thyroiditis. Int J Dermatol. 2017;56:547–52.Google Scholar
  178. 178.
    AltricHashimoto thyroiditiser S, Peter HJ, Pisarevskaja D, Metz M, Martus P, Maurer M. IgE mediated autoallergy against thyroid peroxidase--a novel pathomechanism of chronic spontaneous urticaria? PLoS One. 2011;6:e14794.Google Scholar
  179. 179.
    Leonhardt JM, Heymann WR. Thyroid disease and the skin. Dermatol Clin. 2002;20:473–81.Google Scholar
  180. 180.
    Burman KD, Mckinley-Grant L. Dermatologic aspects of thyroid disease. Clin Dermatol. 2006;24:247–55.Google Scholar
  181. 181.
    Hanley K, Rassner U, Elias PM, Williams ML, Feingold KR. Epidermal barrier ontogenesis: maturation in serum-free media and acceleration by glucocorticoid and thyroid hormone but not selected growth factors. J Invest Dermatol. 1996;106:404–11.Google Scholar
  182. 182.
    Tomić-Canić M, Day D, Samuels HH, Freedberg IM, Blumenberg M. Novel regulation of keratin gene expression by thyroid hormone and retinoid receptor. J Biol Chem. 1996;271:1416–23.Google Scholar
  183. 183.
    Kömüves LG, Hanley K, Jiang Y, Elias PM, Williams ML, Feingold KR. Ligands and activators of nuclear hormone receptors regulate epidermal differentiation during fetal rat skin development. J Invest Dermatol. 1998;111:429–33.Google Scholar
  184. 184.
    Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr Rev. 2000;21:457–87.Google Scholar
  185. 185.
    Safer JD, Crawford TM, Holick MF. A role for thyroid hormone in wound healing through keratin gene expression. Endocrinology. 2004;145:2357–61.Google Scholar
  186. 186.
    Radoja N, Stojadinovic O, Waseem A, Tomic-Canic M, Milisavljevic V, Teebor S, et al. Thyroid hormone and gamma interferon specifically increase K15 keratin gene transcription. Mol Cell Biol. 2004;24:3168–79.Google Scholar
  187. 187.
    Refetoff S, Matalon R, Bigazzi M. Metabolism of L-thyroxine (T4) and L-triiodothyronine (T3) by human fibroblasts in tissue culture: evidence for cellular binding proteins and conversion of T4 to T3. Endocrinology. 1972;91:934–47.Google Scholar
  188. 188.
    Huang TS, Chopra IJ, Beredo A, Solomon DH, Chua Teco GN. Skin is an active site for the inner ring monodeiodination of thyroxine to 3,3’,5’-triiodiothyronine. Endocrinology. 1985;17:2106–13.Google Scholar
  189. 189.
    Torma H, Karlsson T, Michaelsson G, Rollman O, Vahlquist A. Decreased mRNA levels of retinoic acid receptor alpha, retinoid X receptor alpha and thyroid hormone receptor alpha in lesional psoriatic skin. Acta Derm Venereol. 2000;80:4–9.Google Scholar
  190. 190.
    Billoni N, Buan B, Gautier B, Gaillard O, Mahe YF, Bernhard BA. Thyroid hormone receptor β1 is expressed in the human hair follicle. Br J Dermatol. 2000;142:645–52.Google Scholar
  191. 191.
    Dentice M, Luongo C, Huang S, Ambrosio R, Elefante A, Mirebeau-Prunier D, et al. Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc Natl Acad Sci USA. 2007;104:14466–71.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Enke Baldini
    • 1
  • Teresa Odorisio
    • 2
  • Chiara Tuccilli
    • 1
  • Severino Persechino
    • 3
  • Salvatore Sorrenti
    • 1
  • Antonio Catania
    • 1
  • Daniele Pironi
    • 1
  • Giovanni Carbotta
    • 1
  • Laura Giacomelli
    • 1
  • Stefano Arcieri
    • 1
  • Massimo Vergine
    • 1
  • Massimo Monti
    • 1
  • Salvatore Ulisse
    • 1
    Email author
  1. 1.Department of Surgical Sciences“Sapienza” University of RomeRomeItaly
  2. 2.Laboratory of Molecular and Cell BiologyIstituto Dermopatico dell’Immacolata-IRCCSRomeItaly
  3. 3.NESMOS Department“Sapienza” University of RomeRomeItaly

Personalised recommendations