Refractories and Industrial Ceramics

, Volume 60, Issue 3, pp 254–257 | Cite as

Highly Reactive Magnesia Production: Modeling and Experiment

  • M. Yu. Turchin
  • A. V. Masalimov
  • A. N. Smirnov
  • I. A. Grishin

The thermodynamic equilibrium conditions of bicarbonate leaching were analyzed and used to develop a mathematical model for determining the parameters giving the highest extraction of MgO from the raw materials. Laboratory experiments on magnesite samples from Satkinsk deposit, Chelyabinsk Region, confirmed that the simulation results were adequate.


magnesium oxide Satkinsk deposit magnesite thermomechanical enrichment bicarbonate leaching mathematical model 


  1. 1.
    I. D. Kashcheev, Manufacturing of Refractories [in Russian], Metallurgiya, Moscow, 1993, 256 pp.Google Scholar
  2. 2.
    I. D. Kashcheev and A. I. Urvantsev, “Enrichment of magnesite,” in: Abstracts of Papers of an International Conference of Refractorists and Metallurgists [in Russian], Apr. 20 – 21, 2006, Moscow; Nov. Ogneupory, No. 4, 11 (2006).Google Scholar
  3. 3.
    L. B. Khoroshavin, V. A. Perepelitsyn, and V. A. Kononov, Magnesium Refractories: Handbook [in Russian], Intermet Inzhiniring, Moscow, 2001, 567 pp.Google Scholar
  4. 4.
    I. F. Romanovich, P. P. Smolin, G. Z. Khairullina, and A. I. Shevelev, Magnesite and Brucite: Handbook [in Russian], Geoinformmark, Moscow, 1999, 33 pp.Google Scholar
  5. 5.
    M. E. Pozin, Technology of Mineral Salts (Fertilizers, Pesticides, Industrial Salts, Oxides, Acids) [in Russian], Part 1, 3rd Ed., Khimiya, 1970, 792 pp.Google Scholar
  6. 6.
    L. M. Aksel’rod, M. Yu. Turchin, M. I. Nazmiev, et al., “Magnezit Group multipodal furnace for thermal enrichment of magnesite,” in: Abstracts of Papers of an International Conference of Refractorists and Metallurgists [in Russian]; Nov. Ogneupory, No. 3, 20, 21 (2016);
  7. 7.
    L. M. Aksel’rod, M. Yu. Turchin, M. I. Nazmiev, et al., “Satkinsk deposit magnesite enrichment by an x-ray transmission method,” in: Abstracts of Papers of an International Conference of Refractorists and Metallurgists [in Russian], Nov. Ogneupory, No. 3, 21, 22 (2016); Scholar
  8. 8.
    M. Yu. Turchin, A. P. Laptev, D. N. Gan’kin, S. P. Klochkovskii, A N. Smirnov, V. I. Sysoev, and R. N. Abdrakhmanov, RU Pat. 2,595,120, IPC C04B2/10, C04B40/00, “Method of thermomechanical enrichment of magnesite in indirect heating furnaces,” Aug. 20, 2016; Byull., No. 23.Google Scholar
  9. 9.
    A. N. Smirnov, S. P. Klochkovskii, T. V. Mikhailova, R. N. Abdrakhmanov, I. A. Savchenko, V. I. Sysoev, and T. B. Ponamareva, “Enhanced efficiency of magnesium oxide production technology from raw materials” [in Russian], Magnezit Research and Development Report, Satka, 2015, 124 pp.Google Scholar
  10. 10.
    S. P. Klochkovskii, A. N. Smirnov, and Yu. V. Shabalina, “Study of magnesium oxide leaching from Satkinsk deposit magnesite using carbon dioxide,” Teor. Tekhnol. Metall. Proizvod., No. 1, 142 – 147 (2010).Google Scholar
  11. 11.
    A. I. Fernandez, J. M. Chimenos, M. Segarra, et al., “Kinetic study of carbonation of MgO slurries,” Hydrometallurgy, 53(2), 155 – 167 (1999).CrossRefGoogle Scholar
  12. 12.
    M. P. Krasnovskikh, A. A. Ketov, Yu. A. Ketov, and Ya. I. Vaisman, “Thermal decomposition of magnesite and dolomite from Satkinsk deposit,” Vestn. Permsk. Univ., Ser. Khim., 7(2), 145 – 151 (2017).Google Scholar
  13. 13.
    S. Klochkovskii, A. Smirnov, and U. Shabalina, “Thermodynamic and kinetic study of leaching magnesia from natural magnesites by carbon dioxide,” Defect Diffus. Forum, 309/310, 261 – 264 (2011).CrossRefGoogle Scholar
  14. 14.
    S. P. Klochkovskii, A. N. Smirnov, and I. A. Savchenko, “Development of physico-chemical bases for an overall use of high-magnesia siderites,” Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G. I. Nosova, No. 1 (49), 26 – 31 (2015).Google Scholar
  15. 15.
    S. P. Klochkovskii, A. N. Smirnov, and A. P. Laptev, “Kinetics of magnesium-oxide leaching from products of roasting high-magnesium siderite,” Teor. Tekhnol. Metall. Proizvod., No. 12, 117 – 120 (2012).Google Scholar
  16. 16.
    K. Levenberg, “A method for the solution of certain problems in least squares,” Q. J. Appl. Math., 2, 164 – 168 (1944).Google Scholar
  17. 17.
    D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math., 11, 431 – 441 (1963).CrossRefGoogle Scholar
  18. 18.
    P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London, 1981 [Russian translation, Mir, Moscow, 1985, 509 pp].Google Scholar
  19. 19.
    V. B. Kogan, S. K. Ogorodnikov, and V. V. Kafarov, Solubility Guide. Vol. 3, Book 1, Ternary and Multi-component Systems of Inorganic Compounds [in Russian], Nauka, Leningrad, 1969, 944 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Yu. Turchin
    • 1
  • A. V. Masalimov
    • 2
  • A. N. Smirnov
    • 2
  • I. A. Grishin
    • 2
  1. 1.Magnezit GroupChelyabinsk RegionRussia
  2. 2.G. I. Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia

Personalised recommendations