Effect of Hercynite Spinel on the Technological Properties of MCZ Products Used for Lining Cement Rotary Kilns

  • Emad M. M. EwaisEmail author
  • Ibrahim M. I. Bayoumi

Magnesia-calcium zirconate (MCZ) composite products have been tested in the transition zones of cement kilns. Such products are of interest because they are environmentally safe and demonstrate high resistance when exposed to cement clinker at elevated temperatures. Such modifiers as hercynite spinel FeO·Al2O3 (FA) can be added in small quantities to MCZ products to enhance elasticity, improve their ability to form a protective coating on the lining surface, and create a reinforced structure. In this study, various FA amounts (2, 4, and 6 wt.%) were added to the MCZ-clinker made from magnesite and ZrO2 (9.8 wt.%). Next, the material densification parameters, cold compressive strength (CCS), severity of exposure to cement clinker components (CCC), and other technical characteristics of the products made from this material were studied. The maximum product strength was obtained upon introduction of 2 wt.% of FA additive, however, further increase in FA quantity was prevented by an excessive number of micro-cracks and glass-phase formation. The penetration depth of the cement clinker components into the MCZ-FA products decreased with an increase in the FA additive content. In other words, the penetration depth was lower at higher FA quantities. In addition, the behavior of the protective coating and thermal shock resistance of the products improved considerably upon increasing the FA content to 6 wt.%. The products with different FA content can be used for lining the cement rotary kiln zones, in which different protective coating formation conditions are observed.


MCZ composites hercynite spinel (FA) cement clinker protective coating thermal shock resistance (TSR) cold compressive strength (CCS) 


  1. 1.
    Refractory bricks Suppliers, Manufacturers. (n.d.). (accessed July 13, 2018).
  2. 2.
    J. I. Bhatty, Innovations in Portland cement manufacturing, PCA, Skokie (2011).Google Scholar
  3. 3.
    D. Wang, Y. Li, Y. Li, R. Li, and Y. Li, “Optimizing performance of magnesia-spinel brick used at cement rotary kiln,” Adv. Mater. Res., 250 – 253, 588 – 594 (2011).CrossRefGoogle Scholar
  4. 4.
    C. A. Schacht, Refractories handbook, CRC Press, Estados Unidos (2004).CrossRefGoogle Scholar
  5. 5.
    J. Contreras, G. Castillo, E. Rodríguez, T. Das, and A. Guzmán, “Microstructure and properties of hercynite–magnesia–calcium zirconate refractory mixtures,” Mater. Charact., 54 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Otroj, “Synthesis of hercynite under air atmosphere using MgAl2O4 spinel,” Mater. Sci., 21 (2015).Google Scholar
  7. 7.
    G. Buchebner, T. Molinaria, and H. Harmuth, “Magnesia-hercynite bricks, an innovative burnt basic refractory,” Proceedings of the Unified Int. Tech. Conf. on Refractories, UNITECR, 99, 201 – 311 (1999).Google Scholar
  8. 8.
    K. C. Chung and D. H. L. Ng, “Fabrication of magnetic iron–hercynite composites by reaction sintering,” Key Eng. Mater., 334/335, 309 – 312 (2007).CrossRefGoogle Scholar
  9. 9.
    G. Liu, N. Li, W. Yan, C. Gao, W. Zhou, and Y. Li, “Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln,” Ceram. Int., 40, 8149 – 8155 (2014).CrossRefGoogle Scholar
  10. 10.
    G. Gelbmann, R. Krischanitz, and S. Jorg, “Hybrid spinel technology provides performance advances for basic cement rotary kiln bricks,” RHI Bulletin, 2, 10 – 12 (2013).Google Scholar
  11. 11.
    G. X. Yin, Y. Li, J. H. Chen, and B. Pan, “High performance iron-rich magnesia-spinel composite for burning zone of cement rotary kiln,” Adv. Mater. Res., 476 – 478, 1915 – 1919 (2012).Google Scholar
  12. 12.
    J. Szczerba, “Calcium zirconate as the secondary phase of magnesia refractories for cement rotary kiln,” Advances in Science and Technology, 70, 15 – 20 (2010).CrossRefGoogle Scholar
  13. 13.
    P. M. Botta, E. F. Aglietti, J. M. P. López, “Mechanochemical synthesis of hercynite,” Mater. Chem. Phys., 76, 104 – 109 (2002).CrossRefGoogle Scholar
  14. 14.
    G. Liu, N. Li, W. Yan, C. Gao, W. Zhou, and Y. Li, “Composition and structure of a composite spinel made from magnesia and hercynite,” Journal of Ceramic Processing Research, 13, 480 – 485 (2012).Google Scholar
  15. 15.
    B. Lavina, F. Princivalle, and A. Della, “Controlled time-temperature oxidation reaction in a synthetic Mg-hercynite,” Phys. Chem. Miner, 32, 2, 83 – 88 (2005).CrossRefGoogle Scholar
  16. 16.
    A. Álvaro Obregón, J. L. Rodríguez-Galicia, et al., “MgO–CaZrO3-based refractories for cement kilns,” J. Eur. Ceram. Soc., 31, 61 – 74 (2011).CrossRefGoogle Scholar
  17. 17.
    S. Serena, M. Sainz, S. Deaza, and A. Caballero, “Thermodynamic assessment of the system ZrO2-CaO-MgO using new experimental results. Calculation of the isoplethal section MgO–CaO–ZrO2,” J. Eur. Ceram. Soc., 25, 681 – 693 (2005).Google Scholar
  18. 18.
    N. Ross and T. Chaplin, “Compressibility of CaZrO3 perovskite: comparison with Ca-oxide perovskites,” J. Solid State Chem., 172, 123 – 126 (2003).CrossRefGoogle Scholar
  19. 19.
    L. Li, J. Yu, Y. Liu, N. Zhang, and J. Chen, “Synthesis and characterization of high performance CaZrO3-doped X8R BaTiO3- based dielectric ceramics,” Ceram. Int., 41, 8696 – 8701 (2015).CrossRefGoogle Scholar
  20. 20.
    E. V. Galuskin, V. M. Gazeev, T. Armbruster, et al., “Lakargiite CaZrO3: A new mineral of the perovskite group from the North Caucasus, Kabardino-Balkaria, Russia,” American Mineralogist, 93, 1903 – 1910 (2008).CrossRefGoogle Scholar
  21. 21.
    R. E. Jaeger and R. E. Nickell, “Thermal shock resistant zirconia nozzles for continuous copper casting,” Ceramics in Severe Environments, 163 – 184 (1971).Google Scholar
  22. 22.
    H. Kozuka, Y. Kajita, Y. Tuchiya, T. Honda, and S. Ohta, “Further improvements of MgO–CaO–ZrO2 refractory bricks,” In: UNITECR (1995).Google Scholar
  23. 23.
    J. Contreras, G. Castillo, E. Rodríguez, et al., “Microstructure and properties of hercynite–magnesia–calcium zirconate refractory mixtures,” Mater. Charact., 54, 354 – 359 (2005).CrossRefGoogle Scholar
  24. 24.
    E. Rodríguez, G.-A. Castillo, J. Contreras, et al., “Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO–CaZrO3 refractory brick for the cement industry,” Ceram. Int., 38, 6769 – 6775 (2012).CrossRefGoogle Scholar
  25. 25.
    E. Rodríguez, A. Limones, J. Contreras, et al., “Effect of hercynite spinel content on the properties of magnesia-calcium zirconate dense refractory composite,” J. Eur. Ceram. Soc., 35, 2631 – 2639 (2015).CrossRefGoogle Scholar
  26. 26.
    E. M. Ewais, I. M. Bayoumi, and S. A. El-Korashy, “M-CZ composites from Egyptian magnesite as a clinker to RCK refractory lining,” Ceram. Int., 44, 2274 – 2282 (2018).CrossRefGoogle Scholar
  27. 27.
    E. C. A. A. Rodríguez, G.-A. Castillo, T. K. Das, et al., “MgAl2O4 spinel as an effective ceramic bonding in a MgO–CaZrO3 refractory,” J. Eur. Ceram. Soc., 33, 2767 – 2774 (2013).CrossRefGoogle Scholar
  28. 28.
    E. M. Ewais and I. M. Bayoumi, “Fabrication of MgO–CaZrO3 refractory composites from Egyptian dolomite as a clinker to cement rotary kiln lining,” Ceram. Int., 44, 9236 – 9246 (2018).CrossRefGoogle Scholar
  29. 29.
    E. M. Ewais and I. M. Bayoumi, “Magnesium aluminate spinel nanoparticle influences upon the technological properties of MCZ composite brick for RCK lining,” Ceram. Int., 44, 14734 – 14741 (2018).CrossRefGoogle Scholar
  30. 30.
    F. M. Lea, The chemistry of cement and concrete: 3rd ed., Chemical Publishing Company, New York (1971).Google Scholar
  31. 31.
    J. L. Rodríguez-Galicia, A. H. De Aza, J. C. Rendón-Angeles, and P. Pena, “The mechanism of corrosion of MgO/CaZrO3-calcium silicate materials by cement clinker,” J. Eur. Ceram. Soc., 27, 79 – 89 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Refractory & Ceramic Materials Division (RCMD), Central Metallurgical R&D Institute (CMRDI)CairoEgypt
  2. 2.Suez CementCairoEgypt

Personalised recommendations