Advertisement

Reduction of Alkali Content in Nepheline Sludge for the Production of Heat-Resistant Insulating Materials From it

  • D. F. Nurgaliev
  • V. M. Sizyakov
  • V. A. UtkovEmail author
Article
  • 1 Downloads

The results of studies of the reduction of alkali metal oxides in nepheline sludge are presented. The alkali-containing phase is sodium hydroaluminosilicate. The methodology of the experimental studies involved the preparation of a water suspension with a given W:S ratio, mechanical stirring, heating, aging and separation of the pulp on a vacuum filter. Atechnology has been developed capable of reducing the alkali content by 21% of the initial amount of alkali, which has increased the melting temperature by 310°C. Based on the obtained results, pilot plant was designed and refractory heat-insulating materials were developed where the expensive mineral raw materials are substituted with non-scarce man-made waste.

Keywords

heat resistant thermal insulation material man-made waste nepheline sludge mineral raw materials 

References

  1. 1.
    V. A. Utkov, “Recycling waste sludge as elements of a high-tech low-waste technology for the production of alumina from bauxite and nepheline,” Tekhniko-Ekonomiheskij Vestnik RUSALa, No. 18, 51 – 56 (2007).Google Scholar
  2. 2.
    V. A. Utkov, S. A. Nikolaev, V. M. Sizyakov, et al., “Experience with mastering the preparation and use of waste sludge from alumina production,” Metallurg, No. 11, 60 – 62 (2008).Google Scholar
  3. 3.
    V. M. Sizyakov, “Problems of the development of alumina production in Russia” [in Russian], Non-Ferrous Metals of Siberia-2009: Coll. Reports of the First International Congress (Krasnoyarsk, September 8 – 10, 2009), Krasnoyarsk, p. 120 – 135 (2009).Google Scholar
  4. 4.
    V. M. Sizyakov, A. E. Isakov, and I. A. Dibrov, “Thermodynamics of calcium hydrocarboaluminate in alkaline solutions,” Tsvetnye Metally, No. 9, 120 – 125 (2000).Google Scholar
  5. 5.
    M. M. Sychev, V. I. Korneev, N. S. Shmorgunenko, et al., Integrated Processing of Nepheline Sludge [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  6. 6.
    I. V. Meshcheryakov, “Use of nepheline sludge in road construction,” Sovremennye Nauchnye Issledovaniya i Innovatsii, No. 10 (2012).Google Scholar
  7. 7.
    D. F. Nurgaliev, V. M. Sizyakov, and V. A. Utkov, “A study of the thermal conductivity of new refractory concretes with porous fillers,” Refract. Ind. Ceram., 55(4), 304 – 305 (2014).CrossRefGoogle Scholar
  8. 8.
    D. F. Nurgaliev, V.M. Sizyakov, V. A. Utkov, and V. Yu. Bazhin, “The possibility of obtaining fire-proof heat-insulating materials from waste nepheline sludge,” Zh. “Gorny”: Inform.-Analit. Bull., 2(spec. issue No. 5), 256 – 262 (2017).Google Scholar
  9. 9.
    V. N. Brichkin, E. V. Sizyakova, and T. R. Kosovtseva, “Reducing the alkalinity of nepheline sludge and the problem of the quality of portland cement clinker,” Tsvetnye Metally, No. 12, 66 – 68 (2005).Google Scholar
  10. 10.
    Yu. A. Liner, V. A. Reznichenko, A. S. Tuzhilin, et al., “Physicochemical and technological foundations of resource-saving and environmentally friendly technologies for the integrated processing of raw materials containing aluminium,” Tekhnologiya Metallov, No. 6, 2 – 12 (2007).Google Scholar
  11. 11.
    D. V. Kuznetsov, Optimization of Technology for Integrated Processing of Nepheline Concentrates Based on Hydrochemical Treatment of Belite Sludge from Alumina Production [in Russian], dissertation, St. Petersburg (2002) 21 p.Google Scholar
  12. 12.
    Y. F. Zhang, Y. H. Li, and Y. Zhang, “Phase diagram for the system Na2O–Al2O3–H2O at high alkali concentration,” J. Chem. Eng., 48(3), 617 – 620 (2003).Google Scholar
  13. 13.
    E. Bonaccorsi and S. Merlino, “Modular microporous minerals: cancrinite-davyne group and C–S–H phases,” Rev. Miner. Geochem., 57(1), 241 – 290 (2005).CrossRefGoogle Scholar
  14. 14.
    G. D. Ventura, G. D. Gatta, G. J. Redhammer, et al., “Single-crystal polarized FTIR spectroscopy and neutron diffraction refinement of cancrinite,” Phys. Chem. Miner., 36, 193 – 206 (2009).CrossRefGoogle Scholar
  15. 15.
    P. W. Hawkes and J. C. H. Spence, Science of Microscopy, Vol. 1, Springer Science + Business Media, LLC, New York (2007) p. 1332.CrossRefGoogle Scholar
  16. 16.
    Huilan Sun, Bo Wang, Jianxin Zhang, et al., “Decomposition property of γ-2CaO·SiO2 during leaching process of calcium 1aluminate slag,” Light Metals, 81 – 85 (2014).Google Scholar
  17. 17.
    LiWang Xing, Alumina Production Theory & Technology, Central South University, Changsha (2010) 411 p.Google Scholar
  18. 18.
    A. A. Scarsella, S. Noack, E. Gasafi, et al., “Energy in alumina refining: setting new limits,” Light Metals, 131 – 136 (2015).Google Scholar
  19. 19.
    V. Mymrin, H. A. Ponte, O. F. Lopes, and A. V. Vaamonde, “Environment-friendly method of high alkaline bauxite red mud and ferrous slag utilisation as an example of green chemistry,” Green Chem., No. 5, 357 – 360 (2003).CrossRefGoogle Scholar
  20. 20.
    J. Nyboer, A. Laurin, and A. Sheppard, “A review of energy consumption and related data: Canadian aluminium industries 1990 – 1999,” Aluminium Industry Association, 432 – 435 (2001).Google Scholar
  21. 21.
    J. Harnisch, I. S. Wing, H. D. Jacoby, and R. G. Prinn, “Primary aluminium production: climate policy, emissions and costs,” Joint Program Report Series (1999). URL: http://globalchange.mit.edu/publication/14338.
  22. 22.
    D. K. Peeler, T. B. Edwards, I. A. Reamer, and R. J. Workman, “Nepheline formation study for sludge batch 4 (SB4): phase 1 experimental results,” United States: N. p., (2005). DOI:  https://doi.org/10.2172/881429.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. F. Nurgaliev
    • 1
  • V. M. Sizyakov
    • 1
  • V. A. Utkov
    • 1
    Email author
  1. 1.Saint Petersburg Mining UniversitySaint PetersburgRussia

Personalised recommendations