Advertisement

Refractories and Industrial Ceramics

, Volume 60, Issue 2, pp 168–173 | Cite as

Evaluation of the Crack Resistance of Reactive Sintered Composite Boron Carbide-Based Materials

  • S. N. PerevislovEmail author
Article
  • 9 Downloads

The results of studying the crack resistance of reaction-sintered B4C–SiC composite materials impregnated with liquid silicon with identification and fracture methods are presented. With an increase in the amount of B4C in the reaction-sintered material, its fragility increases. The crack resistance of the material can be increased from 3.40 to 4.02 MPa·m1/2 (when tested by different methods) by adding to the composite material up to 30 wt.% SiC. The material is destroyed mainly by the intercrystalline (intergranular) mechanism. Ceramics containing more than 90 wt.% B4C, is partially destroyed by the transcrystalline mechanism.

Keywords

boron carbide silicon carbide reaction sintering siliconization crack resistance physical and mechanical properties material destruction 

References

  1. 1.
    S. N. Perevislov, P. V. Shcherbak, M. V. Tomkovich, “High-density boron carbide ceramics,” Refract. Ind. Ceram., 59(1), 32 – 36 (2018).CrossRefGoogle Scholar
  2. 2.
    N. Cho, Z. Bao, and R. F. Speyer, “Density- and hardness-optimized pressureless sintered and post-hot isostatic pressed B4C,” J. Mater. Res., 20(8), 2110 – 2116 (2005).CrossRefGoogle Scholar
  3. 3.
    X. Du, Z. Zhang, Y. Wang, et al., “Hot-pressing kinetics and densification mechanisms of boron carbide,” J. Am. Ceram. Soc., 98(5), 1400 – 1406 (2015).CrossRefGoogle Scholar
  4. 4.
    S. Hayun, N. Frage, M. P. Dariel, et al., “Dynamic response of B4C –SiC ceramic composites,” Ceramic Armor and Armor Systems II, 178, 147 – 156 (2006).Google Scholar
  5. 5.
    C. P. Zhang, H. Q. Rue, X. Y. Yue, andW. Wang, “Studies on the RBBC ceramics fabricated by reaction bonded SiC,” Rare Metal Mat. Eng., 40, 536 – 539 (2011).Google Scholar
  6. 6.
    N. A. Golubeva, L. A. Plyasunkova, I. Yu. Kelina, et al., “Study of reaction-bonded boron carbide properties,” Refract. Ind. Ceram., 55(5), 414 – 418 (2015).CrossRefGoogle Scholar
  7. 7.
    M. P. Dariel and N. Frage, “Reaction bonded boron carbide: recent developments,” Adv. Appl. Ceram., 111(5/6), 301 – 310 (2012).CrossRefGoogle Scholar
  8. 8.
    S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, “Phase composition and microstructure of reaction-bonded boron-carbide materials,” Refract. Ind. Ceram., 59(2), 179 – 183 (2018).CrossRefGoogle Scholar
  9. 9.
    Y. Wang, S. Tan, and D. Jiang, “The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC,” Carbon, 42(8), 1833 – 1839 (2004).CrossRefGoogle Scholar
  10. 10.
    J. C. Margiotta, D. Zhang, D. C. Nagle, and C. E. Feeser, “Formation of dense silicon carbide by liquid silicon infiltration of carbon with engineered structure,” J. Mater. Res., 23(5), 1237 – 1248 (2008).CrossRefGoogle Scholar
  11. 11.
    P. Barick, D. C. Jana, and N. Thiyagarajan, “Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics,” Ceram. Int., 39(1), 763 – 770 (2013).CrossRefGoogle Scholar
  12. 12.
    C. Zhang, H. Ru, H. Zong, et al., “Coarsening of boron carbide grains during the infiltration of porous boron carbide preforms by molten silicon,” Ceram. Int., 42(16), 18681 – 18691 (2016).CrossRefGoogle Scholar
  13. 13.
    L. Sun, D. Ma, L. Wang, et al., “Determining indentation fracture toughness of ceramics by finite element method using virtual crack closure technique,” Eng. Fract. Mech., 197(6), 151 – 159 (2018).CrossRefGoogle Scholar
  14. 14.
    F. Dai, R. Chen, and K. Xia, “A semi-circular bend technique for determining dynamic fracture toughness,” Exp. Mech., 50(6), 783 – 791 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, “Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by Vickers indentation test,” J. Adv. Ceram., 2(1), 87 – 102 (2013).CrossRefGoogle Scholar
  16. 16.
    S. N. Perevislov, A. S. Lysenkov, and S. V. Vikhman, “Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C,” Inorg. Mater., 53(4), 376 – 380 (2017).CrossRefGoogle Scholar
  17. 17.
    X. Li, D. Jiang, J. Zhang, et al., “Reaction-bonded B4C with high hardness,” Int. J. Appl. Ceram. Tech., 13(3), 584 – 592 (2016).CrossRefGoogle Scholar
  18. 18.
    S. Hayun, A. Weizmann, M. P. Dariel, and N. Frage, “The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide-based reaction-bonded composites,” Int. J. Appl. Ceram. Tech., 6(4), 492 – 500 (2009).CrossRefGoogle Scholar
  19. 19.
    D. D. Nesmelov and S. N. Perevislov, “Reaction sintered materials based on boron carbide and silicon carbide,” Glass Ceram., 71(9/10), 313 – 319 (2015).CrossRefGoogle Scholar
  20. 20.
    N. Frage, L. Levin, and M. P. Dariel, “The effect of the sintering atmosphere on the densification of B4C ceramics,” J. Solid State Chem., 177(2), 410 – 414 (2004).CrossRefGoogle Scholar
  21. 21.
    S. Hayun, A. Weizmann, H. Dilman, et al., “Rim region growth and its composition in reaction bonded boron carbide composites with core-rim structure,” J. Phys.: Conference Series, IOP Publishing, 176(1), 1 – 7 (2009).Google Scholar
  22. 22.
    D. Mallick, T. K. Kayal, J. Ghosh, et al., “Development of multi-phase B–Si–C ceramic composite by reaction sintering,” Ceram. Int., 35(4), 1667 – 1669 (2009).CrossRefGoogle Scholar
  23. 23.
    S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Glass Ceram., 73(7/8), 249 – 252 (2016).CrossRefGoogle Scholar
  24. 24.
    S. N. Perevislov, A. S. Lysenkov, D. D. Titov, M. V. Tomkovich, “Hot-pressed ceramic SiC–YAG materials,” Inorg. Mater., 53(2), 206 – 211 (2017).CrossRefGoogle Scholar
  25. 25.
    S. Xu, G. Qiao, D. Li, et al., “Reaction forming of silicon carbide ceramic using phenolic resin derived porous carbon preform,” J. Eur. Ceram. Soc., 29(11), 2395 – 2402 (2009).CrossRefGoogle Scholar
  26. 26.
    J. H. Chae, J. S. Park, J. P. Ahn, and K. H. Kim, “Mechanical properties of B4C ceramics fabricated by a hot-press sintering,” J. Korean Ceram. Soc., 46(1), 81 – 85 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.I. V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations