Carbon Nanotubes for the Synthesis of Ceramic Matrix Composites (Cleaning, Dispersion, Surface Modification) (Review)

  • A. V. BelyakovEmail author

In light of the continuing decrease in the cost of carbon nanotubes (CNT) and the promising properties of ceramic matrix composites (CMC) reinforced with CNTs, their wide application in industry is on the agenda. For this, inexpensive technologies for the production of CNTs are necessary. Technological stages of the industrial production of complex-shaped products from carbon nanotube-reinforced ceramic matrix composites (CNT-CMC) are reviewed: the cleaning of raw materials after their production, the dispersion of aggregates and some methods for modifying their surface.


ceramic matrix composites (CMC) ceramic matrix nanocomposites (CMNC) carbon nanotubes (CNT) cleaning disaggregation surface modification 


The work was performed in accordance with the Federal Target Program, Contract No. 26.02-IP-1/2017, to develop technology for obtaining new functional ceramic matrix composites with improved electrophysical and thermomechanical properties for the defense, electronic and aerospace industries.


  1. 1.
    V. S. Bakunov, “Analysing the structure of ceramics” [in Russian], Neorganicheskie Materialy, 32(2), 243 – 248 (1996). V. S. Bakunov, “Analysing the structure of ceramics,” Inorg. Mater., 32, No. 2, 220 – 222 (1996).Google Scholar
  2. 2.
    N. Yuca, N. Karatepe, F. Yakuphanoglu, et al., “Thermal and electrical properties of carbon nanotubes purified by acid digestion,” International Scholarly and Scientific Research & Innovation, 5(7), 484 – 489 (2011).Google Scholar
  3. 3.
    R. C. Haddon, J. Sippel, A. G. Rinzler, et. al., “Purification and separation of carbon nanotubes,” MRS Bulletin, 29(4), 252 – 259 (2004).Google Scholar
  4. 4.
    J. Park, S. Banerjee, T. Hemraj, et al., “Purification strategies and purity visualization techniques for single-walled carbon nanotubes,” J. Mater. Chem., 16(2), 141 – 154 (2006).Google Scholar
  5. 5.
    P. X. Hou, C. Liu, and H. M. Cheng, “Purification of carbon nanotubes” Carbon, 46(15), 2003 – 2025 (2008).Google Scholar
  6. 6.
    Y. Zeng, C. Zheng, X. Hou, et al., “Photochemical vapor generation for removing nickel impurities from carbon nanotubes and its real-time monitoring by atomic fluorescence spectrometry,” Microchem. J., 117(11), 83 – 88 (2014).Google Scholar
  7. 7.
    H. Qiu, Y. Maeda, T. Akasaka, et al., “Diameter-selective purification of carbon nanotubes by microwave-assisted acid processing,” Sep. Purif. Technol., 96, 182 – 186 (2012).Google Scholar
  8. 8.
    U. Pełech, A. Narkiewicz, A. Kaczmarek, et al., “Removal of metal particles from carbon nanotubes using conventional and microwave methods,” Sep. Purif. Technol., 136, 105 – 110 (2014).Google Scholar
  9. 9.
    N. Saifuddin, A. Z. Raziah, and A. R. Junizah, “Carbon nanotubes: a review on structure and their interaction with proteins. Hindawi Publishing Corporation,” J. Chem., Article ID 676815, P. 18 (2013).Google Scholar
  10. 10.
    A. Dillon, T. Gennett, K. M. Jones, et al., “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater., 11, 1354 – 1356 (1999).Google Scholar
  11. 11.
    E. Borowiak-Palen, T. Pichler, X. Liu, et al., “Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation,” Chem. Phys. Lett., 363(5/6), 567 – 572 (2002).Google Scholar
  12. 12.
    D. Chattopadhyay, I. Galeska, and F. Papadimitrakopoulos, “Complete elimination of metal catalysts from single wall carbon nanotubes,” Carbon, 40(7), 985 – 988 (2002).Google Scholar
  13. 13.
    I. W. Chiang, B. E. Brinson, A. Y. Huang, et al., “Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process),” J. Phys. Chem. B, 105(35), 8297 – 8301 (2001).Google Scholar
  14. 14.
    I. W. Chiang, B. E. Brinson, R. E. Smalley, et al., “Purification and characterization of single-wall carbon nanotubes,” J. Phys. Chem. B, 105(6), 1157 – 1161 (2001).Google Scholar
  15. 15.
    A. R. Harutyunyan, B. K. Pradhan, J. Chang, et al., “Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles,” J. Phys. Chem. B, 106(34), 8671 – 8675 (2002).Google Scholar
  16. 16.
    E. Farkas, M. E. Anderson, Z. Chen, et al., “Length sorting cut single wall carbon nanotubes by high performance liquid chromatography,” Chem. Phys. Lett., 363(1/2), 111 – 116 (2002).Google Scholar
  17. 17.
    J. M. Moon, K. H. An, Y. H. Lee, et al., “High-yield purification process of single-walled carbon nanotubes,” J. Phys. Chem. B, 105(24), 5677 – 5681 (2001).Google Scholar
  18. 18.
    S. Huang and L. Dai, “Plasma etching for purification and controlled opening of aligned carbon nano-tubes,” J. Phys. Chem. B, 106(14), 3543 – 3545 (2002).Google Scholar
  19. 19.
    P. H. Xiang, C. Liu, Y. Tong, et al., “Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method,” J. Mater. Res., 16(9), 2526 – 2529 (2001).Google Scholar
  20. 20.
    H. Kajiura, S. Tsutsui, H. Huang, et al., “High-quality single-walled nanotubes from arc-produced soot,” Chem. Phys. Lett., 364(5/6), 586 – 592 (2002).Google Scholar
  21. 21.
    G. Hajime, F. Terumi, F. Yoshiya, et al., “Method of purifying single wall carbon nanotubes from metal catalyst impurities,” Honda Giken Kogyo Kabushiki Kaisha, Minato-ku, Japan (2002).Google Scholar
  22. 22.
    H. Hu, B. Zhao, M. E. Itkis, et al., “Nitric acid purification of single-walled carbon nanotubes,” J. Phys. Chem. B, 107(50), 13838 – 13842 (2003).Google Scholar
  23. 23.
    T. Jeong, W. Y. Kim, and Y. B. Hahn, “A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas,” Chem. Phys. Lett., 344(1/2), 18 – 22 (2001).Google Scholar
  24. 24.
    H. T. Fang, C. G. Liu, C. Liu, et al., “Purification of single-wall carbon nanotubes by electrochemical oxidation,” Chem. Mater., 16(26), 5744 – 5750 (2004).Google Scholar
  25. 25.
    E. Unger, A. Graham, F. Kreupl, et al., “Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification,” Curr. Appl. Physics., 2(1), 107 – 111 (2002).Google Scholar
  26. 26.
    D. Nepal, D. S. Kim, and K. E. Geckeler, “A facile and rapid purification method for single-walled carbon nanotubes,” Carbon, 43(3), 660 – 662 (2005).Google Scholar
  27. 27.
    H. Jia, Y. Lian, M. O. Ishitsuka, et al., “Centrifugal purification of chemically modified single-walled carbon nanotubes,” Sci. Technol. Adv. Mater., 6, 571 – 581 (2005).Google Scholar
  28. 28.
    H. Yu, Y. Qu, Z. Dong, et al., “Separation of mixed SWNTs and MWNTs by centrifugal force an experimental study,” In: Proc. 7th IEEE Int. Conf. on Nanotechnology (IEEE-NANO 07), August 2007, p. 1212 – 1216.Google Scholar
  29. 29.
    J. Y. Li and Y. F. Zhang, “A simple purification for single-walled carbon nanotubes,” Physica E, 28(3), 309 – 312 (2005).Google Scholar
  30. 30.
    H. Houjin, S. Masashi, Y. Atsuo, et al., “Sony Corporation Japan,” JP107130245812 35-20020613 WO P 7-12 (2001).Google Scholar
  31. 31.
    S. Bandow, A. M. Rao, K. A. Williams, et al., “Purification of single-wall carbon nanotubes by microfiltration,” J. Phys. Chem. B, 101(44), 8839 – 8842 (1997).Google Scholar
  32. 32.
    K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, et al., “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration,” Chem. Phys. Lett., 282(5/6), 429 – 434 (1998).Google Scholar
  33. 33.
    G. Korneva, H. H. Ye, Y. Gogotsi, et al., “Carbon nanotubes loaded with magnetic particles,” Nano Lett., 5(5), 879 – 884 (2005).Google Scholar
  34. 34.
    J. G. Wiltshire, L. J. Li, A. N. Khlobystov, et al., “Magnetic separation of Fe catalyst from single-walled carbon nanotubes in an aqueous surfactant solution,” Carbon, 43(6), 1151 – 1155 (2005).Google Scholar
  35. 35.
    L. Thien-Nga, K. Hernadi, E. Ljubivic, et al., “Mechanical purification of single-walled carbon nanotube bundles from catalytic particles,” Nano Lett., 2(12), 1349 – 1352 (2002).Google Scholar
  36. 36.
    M. T. Martínez, M. A. Callejas, A. M. Benito, et al., “Microwave single walled carbon nanotubes purification,” Chem. Commun., No. 9, 1000 – 1001 (2002).Google Scholar
  37. 37.
    E. V. Vázquez, V. Georgakilas, and M. Prato, “Microwave-assisted purification of HIPCO carbon nanotubes,” Chem. Commun., No. 20, 2308 – 2309 (2002).Google Scholar
  38. 38.
    J. Ma and J. N. Wang, “Purification of single-walled carbon nanotubes by a highly efficient and non-destructive approach,” Chem. Mater., 20(9), 2895 – 2902 (2008).Google Scholar
  39. 39.
    V. Pifferi, G. Cappelletti, C. Di Bari, et al., “Multi-walled carbon nanotubes (MWYHT) modified electrodes: functionalization on the electroanalytical performances,” Electrochim. Acta., 146(10), 403 – 410 (2014).Google Scholar
  40. 40.
    T. Bortolamiol, P. Lukanov, A.-M. Galibert, et al., “Double-walled carbon nanotubes: quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening,” Carbon, 78(11), 79 – 90 (2014).Google Scholar
  41. 41.
    J. F. Colomer, P. Piedigrosso, I. Willems, et al., “Purification of catalytically produced multi-wall nanotubes,” Chem. Soc., Faraday Trans., 94, 3753 – 3758 (1998).Google Scholar
  42. 42.
    T. Suzuki, S. Inoue, and Y. Ando, “Purification of single-wall carbon nanotubes by using high-pressure micro reactor,” Diamond Relat. Mater., 17(7 – 10), 1596 – 1599 (2008).Google Scholar
  43. 43.
    P. Chungchamroenkit, S. Chavadej, U. Yanatatsaneejit, et al., “Residue catalyst support removal and purification of carbon nano-tubes by NaOH leaching and froth flotation,” Sep. Purif. Technol., 60(2), 206 – 214 (2008).Google Scholar
  44. 44.
    E. Raymundo-Piñero, T. Cacciaguerra, P. Simon, et al., “A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes,” Chem. Phys. Lett., 412, 184 – 189 (2005).Google Scholar
  45. 45.
    S. Delpeux, K. Szostak, E. Frackowiak, et al., “High yield carbon nanotubes from the catalytic decomposition of acetylene on in-situ formed Co nanoparticles,” J. Nanosci. Nanotec., 2, 481 – 484 (2002).Google Scholar
  46. 46.
    E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, et al., “KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization,” Carbon, 43(4), 786 – 795 (2005).Google Scholar
  47. 47.
    J. Barkauskas, I. Stankevičienë, and A. Selskis, “A novel purification method of carbon nanotubes by high-temperature treatment with tetrachloromethane,” Sep. Purif. Technol., 71(3), 331 – 336 (2010).Google Scholar
  48. 48.
    S. G. King, L. McCafferty, V. Stolojan, et al., “Highly aligned arrays of super resilient carbon nanotubes by steam purification,” Carbon, 84(3), 130 – 137 (2015).Google Scholar
  49. 49.
    Y. Y. Bu, K. Hou, and D. Engstrom, “Industrial compatible re-growth of vertically aligned multiwall carbon nanotubes by ultrafast pure oxygen purification process,” Diamond Relat. Mater., 20(5/6), 746 – 751 (2011).Google Scholar
  50. 50.
    X. Ling, Y. Wei, L. Zou, et al., “The effect of different order of purification treatments on the purity of multi-walled carbon nanotubes,” Appl. Surf. Sci., 276(1), 159 – 166 (2013).Google Scholar
  51. 51.
    F. Ikazaki, S. Ohshima, K. Uchida, et al., “Chemical purification of carbon nanotubes by use of graphite-intercalation compounds,” Carbon, 32(8), 1539 – 1542 (1994).Google Scholar
  52. 52.
    Y. J. Chen, M. L. H. Green, J. L. Griffin, et al., “Purification and opening of carbon nanotubes via bromination,” Adv. Mater., 8(12), 1012 – 1015 (1996).Google Scholar
  53. 53.
    P. J. F. Harris, “Carbon nanotube composites,” Int. Mater. Rev., 49(1), 31 – 43 (2004).Google Scholar
  54. 54.
    Y. Y. Huang and E. M. Terentjev, “Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties,” Polymers, 4(1), 275 – 295 (2012).Google Scholar
  55. 55.
    T. Premkuma, R. Mezzenga, and K. E. Geckeler, “Nanotube dispersion: carbon nanotubes in the liquid phase: addressing the issue of dispersion,” Small, 8, 1299 – 1313 (2012).Google Scholar
  56. 56.
    R. Andrews, D. Jacques, M. Minot, et al., “Fabrication of carbon multi-wall nanotube/polymer composites by shear mixing,” Macromol. Mater. Eng., 287, 395 – 403 (2002).Google Scholar
  57. 57.
    J. H. Park, P. S. Alegaonkar, S. Y. Jeon, et al., “Carbon nanotube composite: Dispersion routes and field emission parameters,” Compos. Sci. Technol., 68, 753 – 759 (2008).Google Scholar
  58. 58.
    M. H. G. Wichmann, J. Sumeth, B. Fiedler, et al., “Multi-wall carbon nanotube/epoxy composites produced with a master-batch process,” Mech. Comp. Mater., 42, 395 – 406 (2006).Google Scholar
  59. 59.
    Y. Y. Huang and E. M. Terentjev, “Dispersion and rheology of carbon nanotubes in polymers,” Int. J. Mater. Form., 1, 63 – 74 (2008).Google Scholar
  60. 60.
    Y. Y. Huang, T. P. J. Knowles, and E. M. Terentjev, “Strength of nanotubes, filaments, and nanowires from sonication-induced scission,” Adv. Mater., 21, 3945 – 3948 (2009).Google Scholar
  61. 61.
    Y. Yamamoto, Y. Miyauchi, J. Motoyanagi, et al., “Improved bath sonication method for dispersion of individual single-walled carbon nanotubes using new triphenylene-based surfactant,” Jpn. J. Appl. Phys., 47, 2000 – 2004 (2008).Google Scholar
  62. 62.
    R. Ramasubramaniama and J. Chen, “Homogeneous carbon nanotube/polymer composites for electrical applications,” Appl. Phys. Lett., 83, 2928 – 2930 (2003).Google Scholar
  63. 63.
    W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, XVIII, Cambridge University Press, Cambridge and New York (1989) 525 p.Google Scholar
  64. 64.
    Z. Sun, V. Nicolosi, D. Rickard, et al., “Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential,” J. Phys. Chem. C, 112, 10692 – 10699 (2008).Google Scholar
  65. 65.
    J. M. Bonard, T. Stora, J. P. Salvetat, et al., “Purification and size-selection of carbon nanotubes,” Adv. Mater., 9, 827 – 831 (1997).Google Scholar
  66. 66.
    M. F. Islam, E. Rojas, E. M. Bergey, et al., “High weight fraction surfactant solubilization of single-wall carbon nano-tubes in water,” Nano Lett., 3, 269 – 273 (2003).Google Scholar
  67. 67.
    S. Li and D. Daniel Blankschtein, “Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: A molecular dynamics simulation study,” J. Phys. Chem., 114, 15616 – 15625 (2010).Google Scholar
  68. 68.
    Z. Liu, S. M. Tabakman, Z. Chen, et. al., “Preparation of carbon nanotube bioconjugates for biomedical applications,” Nat. Protoc., 4, 1372 – 1381 (2009).Google Scholar
  69. 69.
    Y. Wu, J. A. S. Hudson, Q. Lu, et al., “Coating single-walled carbon nanotubes with phospholipids,” J. Phys. Chem. B, 110, 2475 – 2478 (2006).Google Scholar
  70. 70.
    R. Rastogia, R. Kaushala, S. K. Tripathib, et al., “Comparative study of carbon nanotube dispersion using surfactants,” J. Colloid Interface Sci., 328, 421 – 428 (2008).Google Scholar
  71. 71.
    M. Zheng, A. Jagota, E. Semke, et al., “DNA-assisted dispersion and separation of carbon nanotubes,” Nat. Mater., 2, 338 – 342 (2003).Google Scholar
  72. 72.
    X. Tu, S. Manohar, A. Jagota, et al., “DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes,” Nature, 460, 250 – 253 (2009).Google Scholar
  73. 73.
    S. S. Karajanagi, H. Yang, P. Asuri, et al., “Protein-assisted solubilization of single-walled carbon nanotubes,” Langmuir, 22, 1392 – 1395 (2006).Google Scholar
  74. 74.
    M. J. O’Connell, P. B. Boul, L. M. Ericson, et al., “Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping,” Chem. Phys. Lett., 342, 265 – 271 (2001).Google Scholar
  75. 75.
    T. Hasan, V. Scardaci, P. H. Tan, et al., “Stabilization and ‘debundling’ of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP),” J. Phys. Chem. C, 111, 12594 – 12602 (2007).Google Scholar
  76. 76.
    J. H. Zou, L.W. Liu, H. Chen, et al., “Dispersion of pristine carbon nanotubes using conjugated block copolymers,” Adv. Mater., 20, 2055 – 2060 (2008).Google Scholar
  77. 77.
    E. Christian, G. M. A. Rahman, N. Jux, et al., “Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids,” J. Am. Chem. Soc., 128, 11222 – 11231 (2006).Google Scholar
  78. 78.
    N. Nakashima, Y. Tomonari, and H. Murakami, “Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion,” Chem. Lett., 31, 638 – 639 (2002).Google Scholar
  79. 79.
    Y. Ji, Y. Y. Huang, A. R. Tajbakhsh, et al., “Polysiloxane surfactants for the dispersion of carbon nanotubes in non-polar organic solvents,” Langmuir, 25, 12325 – 12331 (2009).Google Scholar
  80. 80.
    J. Chen, H. Liu, W. A. Weimer, et al., “Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers,” J. Am. Chem. Soc., 124, 9034 – 9035 (2002).Google Scholar
  81. 81.
    C. Bala´zsi, B. Fe´nyi, N. Hegman, et al., “Development of CNT/Si with improved mechanical and electrical properties,” Composites. Part B: Engineering, 37, 418 – 424 (2006).Google Scholar
  82. 82.
    F. Inam, H. Yan, D. D. Jayaseelan, et al., “Electrically conductive alumina – carbon nanocomposites prepared by spark plasma sintering,” J. Eur. Ceram. Soc., 30, 153 – 157 (2010).Google Scholar
  83. 83.
    Y. Y. Huang, T. P. J. Knowles, and E. M. Terentjev, “Strength of nanotubes, filaments, and nanowires from sonication-induced scission,” Adv. Mater., 21, 3945 – 3948 (2009).Google Scholar
  84. 84.
    Y. Y. Huang and E. M. Terentjev, “Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties,” Polymers, 4, 275 – 295 (2012).Google Scholar
  85. 85.
    S. Cui, R. Caneta, A. Derrea, et al., “Characterization of multiwall carbon nanotubes and influence of surfactant in the processing,” Carbon, 41, 797 – 809 (2003).Google Scholar
  86. 86.
    Q. Zhang, S. Rastogi, D. Chen, et al., “Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique,” Carbon, 44, 778 – 785 (2006).Google Scholar
  87. 87.
    A. Hirsch and O. Vostrowsky, “Functionalization of carbon nanotubes,” Top. Curr. Chem., 245, 193 – 237 (2005).Google Scholar
  88. 88.
    B. Ruelle, C. Bittencourt, and P. Dubois, “Surface treatment of carbon nanotubes using plasma technology,” 474 – 505, In” R. Banerjee and I. Manna, Ceramic Nanocomposites, Woodhead, Oxford, Philadelphia, New Delhi (2013) 596 p.Google Scholar
  89. 89.
    A. Hirsch, “Functionalization of single-walled carbon nanotubes,” Angew. Chem. Int. Ed., 41, 1853 – 1859 (2002).Google Scholar
  90. 90.
    P. Liu, “Modifications of carbon nanotubes with polymers,” Eur. Polym. J., 41, 2693 – 2703 (2005).Google Scholar
  91. 91.
    D. Bonduel, M. Mainil, M. Alexandre, et. al., “Supported coordination polymerization: a unique way to potent polyolefin carbon nanotube nanocomposites,” Chem. Commun., 781 – 783 (2005).Google Scholar
  92. 92.
    E. Thostenson, C. Li, and T.W. Chou, “Nanocomposites in context,” Compos. Sci. Technol., 65, 491 – 516 (2005).Google Scholar
  93. 93.
    K. Fu, W. Huang, Y. Lin, et al., “Defunctionalization of functionalized carbon nanotubes,” Nano Lett., 1(8), 439 – 441 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.D. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations