Advertisement

Effect of Firing Regime on the Structure and Properties of Highly Porous Ceramic Materials Based on Alumina-Magnesia Spinel

  • N. V. BuchilinEmail author
  • G. Yu. Lyulyukina
  • N. M. Varrik
Article

Results are provided for a study of sintering spinel porous ceramics using aluminum and magnesium oxides as starting components without sintering additives. It is shown that the optimum firing temperature range in order to prepare materials with an open-cellular porous structure is 1700 – 1730°C. It is established that preliminary heat treatment of oxides significantly affects material mechanical characteristics of. Materials are obtained with an interconnected porosity of up to 85% and compressive strength of up to 10 MPa.

Keywords

alumina-magnesia spinel ceramic filters ceramic foam materials highly porous cellular materials 

References

  1. 1.
    E. N. Kablov, “Innovative development of FGUP VIAM GNTs RF for implementing “Strategic areas of development of materials and their treatment technology for the period up to 2030,” Aviats. Mater. Technol., No. 1(34), 3 – 33 (2015). DOI:  https://doi.org/10.18577/2071-9140-2015-0-1-3-33.
  2. 2.
    V. P. Buntushkin, E. N. Kablov, O. A. Bazy; ova, and G. I. Morozova, “Alloys based on nickel aluminide,” MiTOM, No. 1, 32 – 34 (1999).Google Scholar
  3. 3.
    E. N. Kablov, N. V. Petrushun, I. L. Svetlov, and I. M. Demonis, “Nickel cast heat-resistant alloys of a new generation,” Aviats. Mater. Tekhnol., No. S, 36 – 51 (2012).Google Scholar
  4. 4.
    L. S. Opaleichuk, I. V. Ozerova, E. N. Verichev, and A. E. Koryshev, RF Patent 20484428. Slip for preparing foam ceramic filters, Patent holder AOOT Stroimashkeramika, No. 93008852/03; Claim 02.18.93, Publ. 07.27.97.Google Scholar
  5. 5.
    L. S. Orbi, R. A. Olsen, K. J. Plantek, M. K. Redden, D. P. Hoak, and F. Chi, RF Patent 2380138. Improvement of foam ceramic filter for improving molten cast iron filtration. Patent holder Porvek PLC, No. 2008108220/15; Claim 08.04.06; Publ. 01.27.10, Bull No. 3.Google Scholar
  6. 6.
    R. A. Olsen, L. S. Orbi, K. J. Plantek, M. K. Redden, and D. P. Hoak, USA Patent 6663776. High-strength SiC filter and method for its manufacture, Patent holder Porvek PLC, No. 10/256844; Claim 09.27. 2002; Publ. 12.16.2003.Google Scholar
  7. 7.
    Ts. Lyu, Ts. Chu, and Sh. Shen, RF Patent 2456056. Ceramic filter containing carbon coatings and method for its manufacture. Patent holder Tsinan Shantsyuan Group Share Holding Co. Ltd., No. 2010118514/03; Claim 01.28.08; Publ. 07.20.12, Bull. No. 20.Google Scholar
  8. 8.
    V. N. Antsiferov, Problems of Powder Materials Science, Part 2 [in Russian], URO RAN, Ekaterinburg (2002).Google Scholar
  9. 9.
    M. L. Sandoval and M. A. Camerucci, “Foaming performance of aqueous albumin and mullite-albumin systems used in cellular ceramic processing,” Ceram. Internat., No. 40, 1675 – 1686 (2014).Google Scholar
  10. 10.
    G. Magnani, A. Brentari, E. Burresi, and G. Raiteri, “Pressure-less sintered silicon carbide with enhanced mechanical properties obtained by the two-step sintering method,” Ceram. Internat., No. 40, 1759 – 1763 (2014).Google Scholar
  11. 11.
    W. Yang, B. Jiang, A. Wang, and H. Shi, “Effect of negatively charged ions on the formation of microarc oxidation coating on 2024 aluminum alloy,” J. Mater. Sci. Technol., No. 28(8) 707 – 712 (2012).Google Scholar
  12. 12.
    M. Aminzare, M. Mazaheri, F. Golestanifard, et al., “Sintering behavior of nano alumina powder shaped by pressure filtration,” Ceram. Internat., No. 37, 9 – 14 (2011).Google Scholar
  13. 13.
    I. Ya. Guzman (editor), Ceramic Chemical Technology; High School Textbook [in Russian], RIF Stroimaterialy, Moscow (2003).Google Scholar
  14. 14.
    E. N. Kablov, B. V. Shchetanov, Yu. A. Ivakhnenko, and Yu. A. Balinova, “Prospective high-temperature reinforcing fiber for metal and ceramic composite materials,” Trudy VIAM, Élektron, Nauk. Tekhn. Zh., No. 2, Art. 05 (2013). URL: http://www.viam-works.ru (access date 12.07.2017).
  15. 15.
    B. V. Shchetanov, Yu. A. Balinova, G. Yu. Lyulyukina, and E. P. Solov’eva, “Structure and properties of continuous polycrystalline α-Al2O3 fibers,” Aviats. Metr. Tekhnol., No. 1, 13 – 18 (2012).Google Scholar
  16. 16.
    N. E. Uvarova, D. V. Grashchenkov, N. V. Isaeva, et al., “High-temperature radioparent materials: today and tomorrow,” Aviats. Mater. Tekhnol., No. 1, 16 – 21 (2010).Google Scholar
  17. 17.
    Yu. A. Balinova and T. A. Kirienko, “Physicochemical properties of multicomponent solutions o ceramic materials containing polyvinyl alcohol,” Aviats. Mater. Tekhnol., no. 1, 34 – 38 (2014). DOI:  https://doi.org/10.18577/2071-9140-2014-0-1-34-38.
  18. 18.
    V. Yu. Nikitina, S. G. Kolyshev, and R. S. Kupsov, “methid for determining the cross sectional area of single crystal Al2O fibers for calculating strength in tension,” Trudy VIAM, Élektron. Sci.-Tekh. J., No. 2, Art 2 (2014) DOI: https://doi.org/10.18577/2307-6046-2014-0-2-3-3.Google Scholar
  19. 19.
    Yu. A. Balonova, T. M. Shcheglova, T. Yu. Lyulyukina, and A. S. Timoshin, “Features of α-Al2O3 formation in polycrystalline fibers with an aluminum oxide content of 99% in the presence of Fe2O3, MgO, SiO2 additives,” Trudy VIAM, Élektron. Sci.-Tekh. J., No. 3, Art. 3 (2014). URL: http://www.viam-works.ru (access date 12.07.2017). DOI: https://doi.org/10.18577/2307-6046-2014- 0-3-3-3.Google Scholar
  20. 20.
    A. A. Evteev, N. A. Makarov, D. O. Lemeshev, and S. V. Zhitnyuk, “Ceramic of the ZrO2–Al2O3 system with addition of eutectic compositions,” Steklo Keram., No. 8, 23 – 27 (2011).Google Scholar
  21. 21.
    I. I. Kitaigorovskii (editor), Glass Technology, 3rd. ed. [in Russian], Gos. Izd. Lit. Stroikh. Arkh. Stoir. Mater., Moscow (1961).Google Scholar
  22. 22.
    N. V. Buchilin and E. P. Prager, “Rheological properties of slip suspensions based on aluminum oxide,” Trudy VIAM, Élektron. Sci.-Tekh. J., No. 6, Art. 06 (2015) URL: http://www.viamworks.ru (access date 12.07.2017). DOI:  https://doi.org/10.18577/2307-6046-2015-0-5-6-6.
  23. 23.
    U. F. Vogt, M. Gorbar, P. Dimopoulos-Eggenschwiler, et al., “Improving the properties of ceramic foams by a vacuum infiltration process,” J. Eur. Ceram. Soc., No. 30, 3005 – 3011 (2010).Google Scholar
  24. 24.
    A. A. Evteev, D. O. Lemeshev, S. V. Zhitnyuk, and N. A. Makarov, “Calculation of the optimum firing regimes for ceramics based on zirconium and aluminum oxides,” Steklo Keram., No. 8, 15 – 21 (2014).Google Scholar
  25. 25.
    V. S. Bakunov and E. S. Lukin, Features of sintering oxide ceramic,” Steklo Keram., No. 7, 9 – 13 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. V. Buchilin
    • 1
    Email author
  • G. Yu. Lyulyukina
    • 1
  • N. M. Varrik
    • 1
  1. 1.FGUP All-Russia Scientific Research Institute of Aviation Materials (VIAM)MoscowRussia

Personalised recommendations