Advertisement

Ceramics Based on Reactively Sintered Boron Carbide

  • A. I. OvsienkoEmail author
  • V. I. Rumyantsev
  • S. S. Ordan’yan
Article
  • 5 Downloads

The influences of various processing parameters on phase and structure formation during reactive sintering of B4C materials in a Si melt are studied. The reaction of B4C particles and C with molten Si during reactive sintering is examined. Dissolution of B4C particles in the Si melt during reactive sintering has a negative effect. Methods for increasing the content of B4C particles in the reactively sintered B4C ceramic are discussed.

Keywords

boron carbide silicon carbide reactive sintering phase composition physicomechanical properties 

References

  1. 1.
    R. Telle and G. Petzow, “Mechanisms in the liquid phase sintering of boron carbide with silicon based melts,” High Tech Ceram. (Part A), 38, 961 – 973 (1986).Google Scholar
  2. 2.
    Z. F. Chen, Y. C. Su, and Y. B. Cheng, “Formation and sintering mechanisms of reaction bonded silicon carbide – boron carbide composites,” Key Eng. Mater., 352, 207 – 212 (2007).CrossRefGoogle Scholar
  3. 3.
    E. F. Kharchenko, V. A. Aniskovich, V. V. Lenskii, I. S. Gavrikov, and V. A. Bykov, RU Pat. 2,440,956 (C1), Jan. 27, 2012, “Method of producing ceramic armor material based on silicon carbide and boron carbide.”Google Scholar
  4. 4.
    A. I. Ovsienko, V. I. Rumyantsev, S. S. Ordan’yan, and V. N. Fishchev, RU Pat. 2,621,241, Jun. 1, 2017, “Nanostructured composite material based on boron carbide and the method of its obtaining.”Google Scholar
  5. 5.
    M. K. Aghajanian, A. L. McCormick, B. N. Morgan, and A. F. Liszkiewicz, Jr., US Pat. 7,332,221 (B2), Feb. 19, 2008, “Boron carbide composite bodies, and method for making same.”Google Scholar
  6. 6.
    K. M. Taylor and R. J. Palicka, US Pat. 3,796,564, Mar. 12, 1974, “Dense carbide composite bodies and method of making same.”Google Scholar
  7. 7.
    C. Zhang, H. Ru, W. Wang, et al., “The role of infiltration temperature in the reaction bonding of boron carbide by silicon infiltration,” J. Am. Ceram. Soc., 97(10), 3286 – 3293 (2014).CrossRefGoogle Scholar
  8. 8.
    S. Hayun, A. Weizmann, M. P. Dariel, and N. Farge, “Microstructural evolution during the infiltration of boron carbide with molten silicon,” J. Eur. Ceram. Soc., 30(4), 1007 – 1014 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Patel, V. V. B. Prasad, and J. Subrahmanyan, “Compressive property of liquid silicon (infiltrated) boron carbide,” Trans. Indian Inst. Met., 63(6), 863 – 866 (2010).CrossRefGoogle Scholar
  10. 10.
    D. Mallick, T. K. Kayal, J. Ghosh, et al., “Development of multi-phase B–Si–C ceramic composite by reaction sintering,” Ceram. Int., 35(4), 1667 – 1669 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Hayun, N. Frage, and M. P. Dariel, “The morphology of ceramic phases in BxC–SiC–Si infiltrated composites,” J. Solid State Chem., 179(9), 2875 – 2879 (2006).CrossRefGoogle Scholar
  12. 12.
    S. Hayun, A. Weizmann, M. P. Dariel, and N. Frage, “The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide-based reaction-bonded composites,” Int. J. Appl. Ceram. Technol., 6(4), 492 – 500 (2009).CrossRefGoogle Scholar
  13. 13.
    M. P. Dariel and N. Frage, “Reaction bonded boron carbide: Recent developments,” Adv. Appl. Ceram., 111(5/6), 301 – 310 (2012).CrossRefGoogle Scholar
  14. 14.
    P. Barick, D. C. Jana, and N. Thiyagarajan, “Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics,” Ceram. Int., 39(1), 763 – 770 (2013).CrossRefGoogle Scholar
  15. 15.
    K. Korniyenko, et al., “Boron–carbon–silicon,” in: Refractory Metal Systems, Springer, Berlin, Heidelberg, 2009, pp. 499 – 534.Google Scholar
  16. 16.
    W. A. Gooch, “An overview of ceramic armor applications,” in: Ceramic Armor Material by Design, J. W. McCauley, et al. (eds.), American Ceramic Society, Westerville, 2002, pp. 3 – 21.Google Scholar
  17. 17.
  18. 18.
    J. Briggs, Engineering Ceramics in Europe and the USA, Enceram, Menith Wood, Worcester, UK, 2011, 331 pp.Google Scholar
  19. 19.
    M. K. Aghajanian, B. N. Morgan, J. R. Singh, et al., “A new family of reaction bonded ceramics for armor applications,” Ceram. Trans., 134, 527 – 539 (2002).Google Scholar
  20. 20.
    A. I. Ovsienko, V. I. Rumyantsev, S. S. Ordan’yan, et al., “Reaction sintered boron carbide: Structure, properties and potential applications as ceramic armor,” in: Current Problems in Production Technology of Modern Ceramics: Proceedings of a Scientific Seminar [in Russian], Izd. Politekhn. Univ., St. Petersburg, 2015, pp. 84 – 93.Google Scholar
  21. 21.
    A. I. Ovsienko, V. I. Rumyantsev, I. A. Bespalov, and N. M. Sil’nikov, “Potential use of reaction sintered boron carbide as a reinforcing ceramic,” Vopr. Oboronoi. Tekh., Ser. 16, No. 7/8 (85/86), 95 – 101 (2015).Google Scholar
  22. 22.
    S. S. Ordan’yan, D. D. Nesmelov, and A. I. Ovsienko, “Phase formation during reactive sintering of the B4C–SiC–Si(Al) composite (Review),” Refract. Ind. Ceram., 58(6), 666 – 672 (2017).CrossRefGoogle Scholar
  23. 23.
    J. Pittari, G. Subhash, J Zheng, et al., “The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics,” J. Eur. Ceram. Soc., 35(16), 4411 – 4422 (2015).CrossRefGoogle Scholar
  24. 24.
    C. Zhang, H. Ru, W. Wang, et al., “The role of infiltration temperature in the reaction bonding of boron carbide by silicon infiltration,” J. Am. Ceram. Soc., 97(10), 3286 – 3293 (2014); DOI:  https://doi.org/10.1111/jace.13085.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. I. Ovsienko
    • 1
    • 2
    Email author
  • V. I. Rumyantsev
    • 2
  • S. S. Ordan’yan
    • 1
  1. 1.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  2. 2.Virial LLCSt. PetersburgRussia

Personalised recommendations