Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 5, pp 482–487 | Cite as

Effect of Adding Cenospheres on Heat-Resistant Lightweight Concrete Properties

  • I. PundieneEmail author
  • I. Prantskevichene
  • M. Kligis
  • A. Kairite
  • G. Girskas
Article
  • 21 Downloads

Results are provided for a study of the effect of adding cenospheres (coal combustion waste) on hydration of alumina cement and exothermic reaction parameters. It is established that an increase in addition of cenospheres retards cement hydration, and reduces specimen density after firing at 1200°C up to 40%, strength up to 60% and shrinkage up to 95% compared with control specimens. With respect to parameters for the relationship of strength and density an amount of 5 – 10% of cenospheres is the optimum.

Keywords

cenospheres (CS) aluminate cement heat-resistant lightweight concrete electrical conductivity (EC) ultrasonic pulse (USP) 

References

  1. 1.
    E. Raask, Mineral Impurities in Coal Combustion: Behavior, Problems, and Remedial Measures, Springer (1985).Google Scholar
  2. 2.
    G. L. Fisher, D. P. Chang, and M. Brummer, “Fly ash collected from electrostatic precipitators: microcrystalline structures and the mystery of the spheres,” Science, 192(4239), 553 – 555 (1976).Google Scholar
  3. 3.
    V. V. Ziryanov and D. V. Zyryanov, Technogenic Resources [in Russian], Maska, Moscow (2009).Google Scholar
  4. 4.
    L. K. Srar, The Properties and Use of Coal Fly Ash, Thomas Telford. LTD., London (2001).Google Scholar
  5. 5.
    V. S. Drozhzhin, I. V. Piculin, and M. D. Kuvaev, “Technical monitoring of microspheres from fly ashes of electric power stations,” World of Coal Ash Conference (2005).Google Scholar
  6. 6.
    D. Jozic and J. Zelic, “The effect of fly ash on cement hydration in aqueous suspensions,” Ceram. Silik., 50(2), 98 – 105 (2006).Google Scholar
  7. 7.
    N. Barbare, A. Shukla, and A. Bose, “Uptake and loss of water in a cenosphere – concrete composite material,” Cement and Concrete Research, 33, 1681 – 1686 (2003).CrossRefGoogle Scholar
  8. 8.
    J. A. Bickley, J. Ryell, C. Rogers, et al. “Some characteristics of high-strength structural concrete: Part 2,” Canadian J. Civil Engineering, 21(6), 1084 – 1087 (1994).CrossRefGoogle Scholar
  9. 9.
    V. Tiwari, A. Shukla, and A. Bose, “Acoustic properties of cenosphere reinforced cement and asphalt concrete,” Appl. Acoustics, 65(3), 263 – 275 (2004).CrossRefGoogle Scholar
  10. 10.
    T. A. Vereshchagina, S. N. Vereshchagin, N. N. Shishkina, et al., “One-step fabrication of hollow aluminosilicate microspheres with a composite zeolite/glass crystalline shell,” Microporous Mesoporous Mater., 169, 207 – 211 (2013).CrossRefGoogle Scholar
  11. 11.
    A. A. Sagradyan and G. A. Zimakova, “Study of the phase composition of zonal microspheres – cement matrix newly formed in a system,” Vestn. Tyumen. Gos. Univ., No. 5, 102 – 106 (2012).Google Scholar
  12. 12.
    V. B. Fenelonov, M. S. Mel’gunov, and V. N. Parmon, “The properties of cenospheres and the mechanism of their formation during high-temperature coal combustion at thermal power plants,” KONA Powder and Particle J., 28, 189 – 208 (2010).CrossRefGoogle Scholar
  13. 13.
    C. Wang, J. Liu, H. Du, et al., “Effect of fly ash cenospheres on the microstructure and properties of silica-based composites,” Ceram. Int., 38, 4395 – 4400 (2012).CrossRefGoogle Scholar
  14. 14.
    E. Ozcivici and R. P. Singh, “Fabrication and characterization of ceramic foams based on silicon carbide matrix and hollow alumino-silicate spheres,” J. Am. Ceram. Soc., 88, No. 12, 3338 – 3345 (2005).CrossRefGoogle Scholar
  15. 15.
    A. Arizmendi-Morquecho, A. Chávez-Valdez, and J. Alvarez-Quintana, “High temperature thermal barrier coatings from recycled fly ash cenospheres,” Appl. Therm. Eng., 48, 117 – 121 (2012).CrossRefGoogle Scholar
  16. 16.
    A. G. Anshits, N. N. Anshits, A. A. Deribas, et al., “Detonation velocity of emulsion explosives containing cenospheres,” Combustion, Explosion, and Shock Waves. 41(5), 591 – 598 (2005).CrossRefGoogle Scholar
  17. 17.
    Alcoa Calcium Aluminate Cement Test Methods Brochure. Revision 5. Available through Alcoa Industrial Chemicals, Frankfurt (1999).Google Scholar
  18. 18.
    E. Y. Okino, M. R. Souza, M. D. E. Santana, et al., “Cement-bonded wood particleboard with a mixture of eucalypt and rubberwood,” Cem. Concr. Compos., 26(6), 729 – 734 (2004).CrossRefGoogle Scholar
  19. 19.
    S. Koc, N. Toplan, K. Yildiz, et al., “Effects of mechanical activation on the nonisothermal kinetics of mullite formation from kaolinite,” J. Therm. Anal. Calorim., 103(3), 791 – 796 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. Pundiene
    • 1
    Email author
  • I. Prantskevichene
    • 1
  • M. Kligis
    • 1
  • A. Kairite
    • 1
  • G. Girskas
    • 1
  1. 1.Heat Insulation Scientific Institute of the Gedinimas Vilnius Technical UniversityVilniusLithuania

Personalised recommendations