Microstructure and Properties of AA6082/(SiC + Graphite) Hybrid Composites

  • P. SharmaEmail author
  • V. Dabra
  • S. Sharma
  • D. Khanduja
  • N. Sharma
  • R. Sharma
  • K. Saini

Hybrid aluminum matrix composites (HAMCs) reinforced with different amounts of ceramic particulates consisting of silicon carbide (SiC) and graphite (Gr) were developed. The amount of ceramic powder was 5 – 15 mass%. Parameters of the hybrid composites such as microstructure, density, and porosity and mechanical properties such as hardness and tensile strength were analyzed. Scanning-electron-microscope photomicrographs showed a uniform distribution of (SiC + Gr) particles in the Al matrix. The density and porosity of the hybrid composite increased from 2.69 to 2.72 g/cm3 and from 0.37 to 1.20%, respectively; Vickers hardness and tensile strength, from 49.5 to 85 VHN and from 161.5 to 187 MPa, respectively. The relative elongation decreased from 8.6 for 5.3 as the content of ceramic particulates (SiC + Gr) increased from 0 to 15 mass%.


hybrid aluminum matrix composites (HAMCs) graphite (Gr) silicon carbide scanning electron microscope (SEM) tensile strength 


  1. 1.
    J. Hemanth, “Quartz (SiO2 P) reinforced chilled metal matrix composite (CMMC) for automobile applications, Mater. Des., 30, 323 – 329 (2009).CrossRefGoogle Scholar
  2. 2.
    Y. C. Feng, L. Geng, P. Q. Zheng, et al., “Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting, Mater. Des., 29, 2023 – 2026 (2008).CrossRefGoogle Scholar
  3. 3.
    C. S. Ramesh, R. Keshavamurthy, B. H. Channabasappa, and A. Abrar, “Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites,” Mater. Sci. Eng., A, 502, 99 – 106 (2009).CrossRefGoogle Scholar
  4. 4.
    H. R. Lashgari, A. R. Sufizadeh, and M. Emamy, “The effect of strontium on the microstructure and wear properties of A356 – 10% B4C cast composites,” Mater. Des., 31, 2187 – 2195 (2010).CrossRefGoogle Scholar
  5. 5.
    P. Sharma, D. Khandja, and S. Sharma, “Tribological and mechanical behavior of particulate aluminium matrix composites,” J. Reinf. Plast. Compos., 33(23), 2192 – 2202 (2014).CrossRefGoogle Scholar
  6. 6.
    N. Altinkok and R. Koker, “Modelling of the tensile and density properties in particle reinforced metal matrix composites by using neural networks,” Mater. Des., 27, 625 – 631 (2006).CrossRefGoogle Scholar
  7. 7.
    J. W. Kaczmar, K. Pietrzak, and W. Wlosinski, “The production and application of metal matrix composite materials,” J. Mater. Process. Technol., 106, 58 – 67 (2000).CrossRefGoogle Scholar
  8. 8.
    P. Sharma, S. Sharma, and D. Khanduja, “On the use of ball milling for the production of ceramic powders,” Mater. Manuf. Processes, 30, 1370 – 1376 (2015).CrossRefGoogle Scholar
  9. 9.
    W. Wang, Q. Y. Shi, and P. Liu, “A novel way to produce bulk SiC reinforced aluminium metal matrix composites by friction stir processing,” J. Mater. Process. Technol., 209, 2099 – 2103 (2009).CrossRefGoogle Scholar
  10. 10.
    C. M. Hu, C. M. Lai, and P. W. Kao, “Solute-enhanced tensile ductility of ultrafine-grained Al–Zn alloy fabricated by friction stir processing,” Scr. Mater., 60, 639 – 642 (2009).CrossRefGoogle Scholar
  11. 11.
    C. G. Rhodes, M. W. Mahoney, and W. H. Bingel, “Fine-grain evolution in friction stir processed 7050 aluminium,” Scr. Mater., 48, 1451 – 1455 (2003).CrossRefGoogle Scholar
  12. 12.
    C. J. Hsu, C. Y. Chang, and P. W. Kao, “Al–Al3Ti nanocomposites produced in situ by friction stir processing,” Acta Mater., 54, 5241 – 5249 (2006).CrossRefGoogle Scholar
  13. 13.
    K. R. Ravi, V. M. Sreekumar, R. M. Pillai, et al., “Optimization of mixing parameters through a water model for metal matrix composites synthesis,” Mater. Des., 28, 871 – 881 (2007).CrossRefGoogle Scholar
  14. 14.
    K. M. Shorowordi, T. Laoui, A. S. M. A. Haseeb, et al., “Microstructure and interface characteristics of B4C, SiC, and Al2O3 reinforced Al matrix composites: A comparative study,” J. Mater. Process. Technol., 142, 738 – 743 (2003).CrossRefGoogle Scholar
  15. 15.
    I. Kerti and F. Toptan, “Microstructural variations in cast B4C-reinforced aluminium matrix composites (AMCs),” Mater. Lett., 62, 1215 – 1218 (2008).CrossRefGoogle Scholar
  16. 16.
    M. K. Surappa, “Microstructure evolution during solidification of DRMMC: State of art,” J. Mater. Process. Technol., 63, 325 – 333 (1997).CrossRefGoogle Scholar
  17. 17.
    A. Mortensen, “Mechanical and physical behaviour of metals and ceramic compounds,” Riso National Laboratory, Roskilde, Denmark, 1988, p. 141.Google Scholar
  18. 18.
    B. C. Pai, K. G. Satyanarayana, and P. S. Robi, “Effect of chemical and ultrasound treatment on the tensile properties of carbon fibers,” J. Mater. Sci. Lett., 11, 779 – 781 (1992).CrossRefGoogle Scholar
  19. 19.
    M. Kok, “Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites,” J. Mater. Process. Technol., 161, 381 – 387 (2005).CrossRefGoogle Scholar
  20. 20.
    P. Sharma, G. Chauhan, and N. Sharma, “Production of AMC by stir casting: An overview,” Int. J. Contemporary Pract., 2(1), 23 – 46 (2013).Google Scholar
  21. 21.
    P. Sharma, D. Khanduja, and S. Sharma, “Metallurgical and mechanical characterization of Al6082–B4C/Si3N4 hybrid composites manufactured by combined ball milling and stir casting,” Appl. Mech. Mater., 594, 484 – 488 (2014).CrossRefGoogle Scholar
  22. 22.
    P. Sharma, S. Sharma, and D. Khanduja, “A study on microstructure of aluminium matrix composites,” J. Asian Ceram. Soc., 3(3), 240 – 244 (2015).CrossRefGoogle Scholar
  23. 23.
    G. B. V. Kumar, C. S. P. Rao, and N. Selvaraj, “Studies on mechanical and dry sliding wear of Al6061–SiC composites,” Composites, Part B, 43, 1185 – 1191 (2012).CrossRefGoogle Scholar
  24. 24.
    Y. Sahin, “Preparation and some properties of SiC particle reinforced aluminium alloy composites,” Mater. Des., 24, 671 – 679 (2003).CrossRefGoogle Scholar
  25. 25.
    Y. Sahin and M. Acilar, “Production and properties of SiCp reinforced aluminium alloy composites,” Composites, Part A, 34, 709 – 718 (2003).CrossRefGoogle Scholar
  26. 26.
    V. S. Aigbodion and S. B. Hassan, “Effect of silicon carbide reinforcement on microstructure and properties of cast Al–Si–Fe/SiC particulate composites,” Mater. Sci. Eng., A, 447, 355 – 360 (2007).CrossRefGoogle Scholar
  27. 27.
    A. M. Hassan, G. M. Tashtoush, and A. K. J. Ahmed, “Effect of graphite and / or silicon carbide particles addition on the hardness and surface roughness of Al – 4 wt.% Mg alloy,” J. Compos. Mater., 41, 453 – 465 (2007).CrossRefGoogle Scholar
  28. 28.
    F. Akhlaghi and Z. A. Bidaki, “Influence of graphite content on dry sliding and oil impregnated sliding wear behaviour of Al2024–Gr composite produced by in situ powder metallurgy method,” Wear, 266, 37 – 45 (2009).CrossRefGoogle Scholar
  29. 29.
    A. Baradeswaran and A. E. Perumal, “Wear and mechanical characteristics of Al 7075/graphite composites,” Composites, Part B, 56, 472 – 476 (2014).CrossRefGoogle Scholar
  30. 30.
    S. N. Prashant, N. Madeva, and V. Auradi, “Preparation and evaluation of mechanical and wear properties of 6061 Al reinforced with graphite particulate metal matrix composite,” Int. J. Metall. Mater. Sci. Eng., 2(3), 85 – 95 (2012).Google Scholar
  31. 31.
    P. Sharma, S. Sharma, and D. Khanduja, “Effect of graphite reinforcement on physical and mechanical properties of aluminium metal matrix composites,” Part. Sci. Technol., 34(1), 1 – 6 (2016).CrossRefGoogle Scholar
  32. 32.
    S. Suresha and B. K. Sridhara, “Effect of silicon carbide particulates on wear resistance of graphitic aluminium matrix composites,” Mater. Des., 31, 4470 – 4477 (2010).CrossRefGoogle Scholar
  33. 33.
    A. R. Riahi and A. T. Alpas, “The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites,” Wear, 251, 1396 – 1407 (2001).CrossRefGoogle Scholar
  34. 34.
    S. Basavarajappa, G. Chandramohan, M. Arjun, et al., “Influence of sliding speed on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite,” Wear, 262, 1007 – 1012 (2007).CrossRefGoogle Scholar
  35. 35.
    P. K. Rohatgi, R. Guo, J. K. Kim, et al., “Wear and friction of cast aluminum–SiC–Gr composites: Materials solutions,” On wear of engineering materials proceedings, Indianapolis, Indiana, 1997, pp. 205 – 211.Google Scholar
  36. 36.
    S. A. Alidokht, Z. A. Abdollah, S. Soleymani, and H. Assadi, “Microstructure and tribological performance of an aluminium based hybrid composite produced by friction stir processing,” Mater. Des., 32, 2727 – 2733 (2011).CrossRefGoogle Scholar
  37. 37.
    P. K. Rohatgi, Y. Liu, and S. Ray, “Friction and wear of metal-matrix composites,” ASM Handbook, 2004, Vol. 18, pp. 801 – 811.Google Scholar
  38. 38.
    S. Suresh, N. S. V. Moorthi, S. C. Vettivel, N. Selvakumar, and G. R. Jinu, “Effect of graphite addition on mechanical behavior of Al6061/TiB2 hybrid composite using acoustic emission,” Mater. Sci. Eng., A, 612, 16 – 27 (2014).CrossRefGoogle Scholar
  39. 39.
    P. Sharma, S. Sharma, and D. Khanduja, “Parametric study of dry sliding wear behavior of hybrid metal matrix composite produced by a novel process,” Metall. Mater. Trans. A, 46(7), 3260 – 3270 (2015).CrossRefGoogle Scholar
  40. 40.
    P. Sharma, D. Khanduja, and S. Sharma, “Dry sliding wear investigation of Al6082/Gr metal matrix composites by response surface methodology,” J. Mater. Res. Technol., 5, No. 1, 29 – 36 (2016).CrossRefGoogle Scholar
  41. 41.
    P. Sharma, D. Khanduja, and S. Sharma, “Parametric study of dry sliding wear of aluminium metal matrix composites by response surface methodology,” Mater. Today Proc., 2(4/5), 2687 – 2697 (2015).CrossRefGoogle Scholar
  42. 42.
    P. Sharma, D. Khanduja, and S. Sharma, “Production of hybrid composite by a novel process and its physical comparison with single reinforced composites,” Mater. Today Proc., 2(4/5), 2698 – 2707 (2015).CrossRefGoogle Scholar
  43. 43.
    P. Sharma, S. Sharma, and D. Khanduja, “Production and some properties of Si3N4 reinforced aluminium alloy composites,” J. Asian Ceram. Soc., 3(3), 352 – 359 (2015).CrossRefGoogle Scholar
  44. 44.
    J. Hashim, L. Looney, and M. S. J. Hashmi, “Metal matrix composites: Production by the stir casting method,” J. Mater. Process. Technol., 92/93, 1 – 7 (1999).CrossRefGoogle Scholar
  45. 45.
    H. Sevik and K. S. Can, “Properties of alumina particulate reinforced aluminium alloy produced by pressure die casting,” Mater. Des., 27, 676 – 683 (2006).CrossRefGoogle Scholar
  46. 46.
    S. A. Sajjadi, H. R. Ezatpour, and H. Beygi, “Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting,” in: Proceedings of 14th National Conference on Material Science and Engineering, Tehran, Iran, 2010, pp. 325 – 332.Google Scholar
  47. 47.
    ASTM Standard E8, Standard test method for tension testing of metallic materials, West Conshohocken (USA), ASTM, International (2004).Google Scholar
  48. 48.
    P. Sharma, S. Sharma, and D. Khanduja, “Production and characterization of AA6082-(Si3N4 + Gr) stir cast hybrid composites,” Part. Sci. Technol., 35(2), 158 – 165 (2016).CrossRefGoogle Scholar
  49. 49.
    F. Toptan, A. Kilicarslan, M. Cigdem, and I. Kerti, “Processing and microstructural characterization of AA1070 and AA 6063 matrix B4C reinforced composites,” Mater. Des., 31, 87 – 91 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Sharma
    • 1
    Email author
  • V. Dabra
    • 1
  • S. Sharma
    • 2
  • D. Khanduja
    • 3
  • N. Sharma
    • 4
  • R. Sharma
    • 5
  • K. Saini
    • 1
  1. 1.Panipat Institute of Engineering and TechnologyPanipatIndia
  2. 2.Gautam Buddha UniversityGreater NoidaIndia
  3. 3.National Institute of TechnologyKurukshetraIndia
  4. 4.Maharishi Markendshvar UniversityAmbalaIndia
  5. 5.Amity UniversityGreater NoidaIndia

Personalised recommendations