Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 218–222 | Cite as

Comparative Analysis of the Properties of ZrO2–SiO2 and ZrO2–Al2O3–SiO2 Composition Fiber Composite Materials

  • Yu. A. Balinova
  • N. V. Buchilin
  • V. G. Babashov
Article
  • 5 Downloads

Strength, morphology, and phase composition are analyzed for a ceramic composite system based on fibers of tetragonal ZrO2 and a matrix with different content of SiO2 and Al2O3. It is shown that with an Al2O3 content from 0 to 20 wt.% there is formation of a precipitation-hardened structure and an increase in material ultimate strength in bending. The reduction in strength with a further increase in Al2O3 content is due to a deficiency in SiO2 binder and inadequate Al2O3 and mullite particle sintering with each other. Features of the structure and phase composition are demonstrated for a composite based on ZrO2 fibers with a different Al2O3:SiO2 ratio in the matrix.

Keywords

ceramic composite materials (CCM) discrete ZrO2 fibers SiO2 matrix sol-gel precursor 

Notes

Work was carried out within the scope of implementing comprehensive scientific area 14.3 “multifunctional heatproof and heat insulation materials” (1) within the scope of project No. 13-08-12110 ofi m with the Russian fund for fundamental research.

References

  1. 1.
    E. N. Kablov, “Innovative development FGUP VIAM GNTs RF “Strategic areas of development of materials and technology for their development in the period up to 2030,” Aviats. Mater. Technol, No. 1(34) (2015), 3 – 33. DOI:  https://doi.org/10.18577/2071-9140-2015-0-1-3-33.
  2. 2.
    E. N. Kablov, “Russian needs of new generation materials,” Redkie Zemli, No. 3, 813 (2014).Google Scholar
  3. 3.
    D. V. Grashchenkov and L. V. Chursova, “Strategy of developing composite and functional materials,” Aviats. Mater. Technol, No. S, 231 – 242 (20012).Google Scholar
  4. 4.
    E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “High-temperature structural composite materials based on glass and ceramic for prospective aviation technology objects,” Steklo Keram., No. 4, 7 – 11 (2012).Google Scholar
  5. 5.
    E. N. Kablov, D. V. Grashchenkov,, N. V. Isaeva, et al., “Prospective high-temperature composite ceramic materials,” Ross. Khim. Zh., LIV(1), 20 – 24 (2010).Google Scholar
  6. 6.
    E. N. Kablov, O. G. Ospennikova, and B. S. Lomberg, “Strategic areas for developing structural materials and their processing technology for aero engines of the present and future,” Avtomat Svarka, No. 10, 23 – 32 (2013).Google Scholar
  7. 7.
    N. M. Varrik, Yu. A. Ivakhnenko, and V. G. Maksimov, “Oxide-oxide composite materials for gas turbine engines (review),” Trudy VIAM: Elektron,. Nauch. Tekhn. Zh., No. 8, Art. 03 (2014). DOI: https://doi.org/10.18577/2307-6046-2014-0- 3-3.Google Scholar
  8. 8.
    Yu. A. Ivakhnenko, V. G. Babashov, A.M. Zimichev, and E. V. Tinyakova, “High-temperature heat insulation and heat protection materials based on refractory compound fibers,” Aviats. Mater. Technol, No. S, 380 – 386 (2012).Google Scholar
  9. 9.
    Proceeding of the 15th Annual Conference on Composites and Advanced Ceramic Materials. Part 2 of 2: Ceramic Engineering and Science Proceeding, 12(9/10) (2009).Google Scholar
  10. 10.
    Ceramics and Composite materials, Proc. VII All-Russia Sci. Conf, Syktyvkar (2010).Google Scholar
  11. 11.
    US Patent 2608525. Catalytic cracking of hydrocarbons with a silica-alumina-zirconia composite, Claim 01.11.46, Publ. 08.26.52.Google Scholar
  12. 12.
    G. Aguila, F. Gracia, and P. Araya, “CuO and CeO2 catalysts supported on Al2O3, ZrO2 and SiO2 in the oxidation of CO at low temperature,” Applied Catalysis A-General, 343, 16 – 24 (2008). URL: http://repositorio.uchile.cl/bitstream/handle/2250/125036/AguilaGonzalo.pdf?sequence=1&isAllowed=y (access date 14.09.2017). DOI:  https://doi.org/10.1016/j.apcata.2008.03.015 CrossRefGoogle Scholar
  13. 13.
    W. Wang, K. Wu, P. Lui, et al., “Hydrodeoxygenation of p-cresol over Pt/Al2O3 catalyst promoted by ZrO2, CeO2 and CeO2. ZrO2,” Ind. Eng. Chem. Res., 55, 7598 – 7603 (2016) http://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b00515.Google Scholar
  14. 14.
    V. V. Kumar, G. Naresh, M. Sudhakar, et al., “An investigation on the influence of support type for Ni catalyzed vapour phase hydrogenation of aqueous levulinic acid to γ-valerolactone,” RSC Advanced, 6, 9872 – 9879 (2016)CrossRefGoogle Scholar
  15. 15.
    E. D. Banus, M. A. Ulla, E. E. Miro, and V. G. Milt, “Structured catalyst for soot combustion for diesel engines. Diesel engine — combustion, emissions and condition monitoring,” InTech.. 118 – 142 (2013). URL: http://cdn.intechopen.com/pdfs/44436/InTech-structuredcatalystsforsootcombustionfordieselengines.pdf (access date 04.09.2017). DOI:  https://doi.org/10.5772/54516.Google Scholar
  16. 16.
    Yu. I. Golovin, D. G. Kuznetsov, V. M. Vasyukov, et al., “Composites based on zirconium oxide and their use for immobilization of radioactive waste,” Vestn. TGU, 18(6), 3150 (2013).Google Scholar
  17. 17.
    R. Gomez, T. Lopez, T. Tzompantzi, et al., “Zirconia/silica sol-gel catalysts: effect of surface heterogeneity on the selectivity 2-propanol decomposition,” Langmuir, 13, 970 – 973 (1997).CrossRefGoogle Scholar
  18. 18.
    Q. P. Wang, X. S. Tian, S. X. Liu, et al., “Phase transformation of Al2O3–SiO2–ZrO2 composite membranes,” Adv. Mater. Res., 177, 329 – 333 (2010). URL: https://www.scientific.net/AMR.177.329 (access date 08.25.2017). DOI:  https://doi.org/10.4028/www.scientific.net/AMR.177.329.
  19. 19.
    C. C. Barry and N. M. Grant, Ceramic Materials. Science and Engineering, Springer (2007).Google Scholar
  20. 20.
    R. Zhang, Y. Changshou, and W. Baoling, “Novel Al2O3–SiO2 aerogel / porous zirconia composite with ultra-low thermal conductivity,” J. Porous Mater, 1 – 8 (2017).Google Scholar
  21. 21.
    R. Zhang, “Enhanced mechanical and thermal properties of anisotropic fibrous porous mullite-zirconia composites produced using sol-gel impregnation,” J. Alloys Compd., 699, 511 – 516 (2017). URL: http://www.sciencedirect.com/science/article/pii/S0925838817300099 (access date 04.09.2017). DOI:  https://doi.org/10.1016/j.jallcom.2017.01.007.CrossRefGoogle Scholar
  22. 22.
    Abdul-Ghani Olabi “Characterisation of alumina-zirconia composites produced by micron-sized powders,” DCU, 115 (2005).Google Scholar
  23. 23.
    P. Bosh and J.-C. Niepsce, “Ceramic materials. Processes, properties and applications,” ISTE, 573 (2007).Google Scholar
  24. 24.
    R. E. Loehman, Characterization of Ceramics Momentum Press, N. Y. (2010).Google Scholar
  25. 25.
    S. W. Freiman and J. J. Mecholsky, The Fracture of Brittle Materials. Testing and Analysis, Wiley (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu. A. Balinova
    • 1
  • N. V. Buchilin
    • 1
  • V. G. Babashov
    • 1
  1. 1.FGUP All-Russia Institute of Aviation Materials GNTs RFMoscowRussia

Personalised recommendations