Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 207–214 | Cite as

Formation of Wear- and Corrosion-Resistant Coatings by the Microarc Oxidation of Aluminum

  • M. A. MarkovEmail author
  • A. D. Bykova
  • A. V. Krasikov
  • B. V. Farmakovskii
  • D. A. Gerashchenkov

We present the results of experimental investigations in the field of formation of ceramic aluminooxide coatings by the method of microarc oxidation of aluminum. The research works were carried out at the “Prometei” CSRS of Structural Materials of the “Kurchatov Institute” SRC.


microarc oxidation (MAO) protective coatings surface treatment hardening of metals oxide film gas-dynamic cold spraying (GDCS) wear-resistant material 


The experimental investigations were carried out within the framework of the theme “Composition, Structure, and Properties of Structural and Functional Materials” on the equipment of the Center of Collective Use of the Scientific Equipment at the “Prometei” Center of Structural Materials of the “Kurchatov Institute” Sci.-Res. Center under the financial support of the Russian Ministry of Education and Science according to Agreement No. 14.595.21.0004 with unique identifier RFMEFI59517X0004.


  1. 1.
    V. F. Henley, Anodic Oxidation of Aluminum and Its Alloys, Pergamon Press, Elmsford, NY (1982).Google Scholar
  2. 2.
    V. I. Chernenko, V. I. Snezhko, and I. I. Papanova, Creation of Coatings by Anodic Arc Electrolysis [in Russian], Khimiya, Leningrad (1991).Google Scholar
  3. 3.
    S. V. Korsh, Technology of microarc oxidation of workpieces made of titanium and aluminum alloys, Progress. Mater. Tekhnol., No. 1, 188 – 189 (1993).Google Scholar
  4. 4.
    N. V. Barykin, Development of the Technology of Recovery and Hardening of Products Made of Aluminum Alloys by Microarc Oxidation [in Russian], Candidate-Degree Thesis (Engineering) Moscow (1994).Google Scholar
  5. 5.
    S. Sun, Q. Zheng, D. Li, and J. Wen, “Long-term atmospheric corrosion behavior of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments,” Corros. Sci., 51, 719 – 727 (2009).CrossRefGoogle Scholar
  6. 6.
    T. G. Harvey, “Cerium based conversion coatings on aluminium alloys: A process review,” Corros. Eng. Sci. Technol., 48, 248 – 269 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Bozza, R. Giovanardi, T. Manfredini, et al., “Pulsed current effect on hard anodizing process of 7075-T6 aluminium alloy,” Surf. Coat. Technol., 270, 139 – 144 (2015).CrossRefGoogle Scholar
  8. 8.
    P. M. Nedozorov, K. N. Klin, T. P. Yarovaya, et al., “Optical properties of ZrO2-containing anodic coatings on aluminum,” Zh. Prikl. Spektr., 68(4), 512 – 514 (2001).Google Scholar
  9. 9.
    M. S. Vasil’eva, V. S. Rudnev, N. B. Kondrikov, et al., “Catalytic activity of Mn-containing layers formed by the anodic spark deposition,” Zh. Prikl. Khim., 77(2), 222 – 225 (2004).Google Scholar
  10. 10.
    E. Matykina, R. Arrabl, A. Mohamed, et al., “Plasma electrolytic oxidation of preanodized aluminium,” Corros. Sci., 51, 2897 – 2905 (2009).CrossRefGoogle Scholar
  11. 11.
    X. Yang, M. Li, X. Lin, et al., “Enhanced in vitro biocompatibility/bioactivity of biodegradable Mg–Zn–Zr alloy by micro-arc oxidation coating contained Mg2SiO4,” Surf. Coat. Technol., 233, 65 – 73 (2013).CrossRefGoogle Scholar
  12. 12.
    S. V. Gnedenkov, S. L. Sinebryukhov, O. A. Khrisanfova, et al., “Protective coatings on MA8 magnesium alloy,” Korr.: Mater., Zashch., No. 12, 18 – 29(2010).Google Scholar
  13. 13.
    S. A. Korpushenkov, A. I. Kulak, G. L. Shchukin, et al., “Microplasmic electrochemical deposition of composite coatings based on aluminum oxide and polyethylene on the surface of iron,” Fizikokhim. Poverkhn. Zashch. Mater., 46(4), 387 – 392 (2010).Google Scholar
  14. 14.
    J. Guo, L. Wang, S. C. Wang, et al., “Preparation and performance of a novel multifunctional plasma electrolytic oxidation composite coating formed on magnesium alloy,” J. Mater. Sci., 44, 1998 – 2006 (2009).CrossRefGoogle Scholar
  15. 15.
    A. G. Rakoch and I. V. Bardin, “Creation of multifunctional coatings on the surfaces of products made of light structural alloys,” in: Proc. of the All-Russian Youth School-Conference “Modern Problems of Metals Science” [in Russian], National University of Science and Technology “MISiS,” Moscow (2009), pp. 49 – 60.Google Scholar
  16. 16.
    V. S. Rudnev, N. B. Kondrikov, L. M. Tyrina, et al., “Catalytically active structures on metals,” Kritich. Tekhnol. Membr., No. 4 (28), 63 – 67 (2005).Google Scholar
  17. 17.
    X. Liu, G. Liu, and J. Xie, “Preliminary study on preparation of black ceramic coating firmed on magnesium alloy by micro-arc oxidation in carbon black pigment-contained electrolyte,” Procedia Engineering, 36, 261 – 269 (2012).CrossRefGoogle Scholar
  18. 18.
    V. S. Rudnev, A. A. Vaganov-Vil’kins, P. M. Nedozorov, et al., “Hybrid polytetrafluoroethyleneoxide coatings on aluminum and titanium formed by the method of plasma-electrolyte oxidation,” Fizikokhim. Poverkh. Zashch. Mater., 49(1), 95 – 103 (2013).Google Scholar
  19. 19.
    P. S. Gordienko, Formation of Coatings on Anode-Polarized Electrodes in Aqueous Electrolytes for the Sparking and Breakdown Potentials [in Russian], Dal’nauka, Vladivostok (1996).Google Scholar
  20. 20.
    A. L. Yerokhin, X. Nie, A. Leyland, et al., “Plasma electrolysis for surface engineering,” Surf. Coat. Technol., 122, 73 – 93 (1999).CrossRefGoogle Scholar
  21. 21.
    A. G. Rakoch. A. V. Dub, and A. A. Gladkova, Anodization of Light Alloys in Various Electric Modes. Plasma-Electrolyte Nanotechnology [in Russian], Staraya Basmannaya, Moscow (2012).Google Scholar
  22. 22.
    P. S. Gordienko, V. A. Dostovalov, and A. V. Efimenko, Microarc Oxidation of Metals and Alloys [in Russian], FEFU, Vladivostok (2013).Google Scholar
  23. 23.
    A. K. Chubenko, A. I. Mamaev, Yu. Yu. Budnitskaya, and T. I. Dorofeeva, “Role of duration of current pulses as a factor controlling the physicomechanical characteristics of anode-oxide coatings by an example of D16 aluminum alloy,” Nauch.-Tekh. Vestn. Povolzh., 2, 62 – 64 (2013).Google Scholar
  24. 24.
    P. S. Gordienko, D. V. Dostovalov, I. G. Zhevtun, and I. A. Shabalin, “Microarc oxidation for the impulsive polarization in the galvanodynamic mode,” Èlectron. Obrab. Mater., 49, 35 – 42 (2013).Google Scholar
  25. 25.
    V. N. Malyshev, Hardening of Friction Surfaces by the Method of Microarc Oxidation [in Russian], Doctoral Degree Thesis (Engineering) Moscow (1999).Google Scholar
  26. 26.
    S. Ya. Grikhiles and K. I. Tikhonov, Electrolytic and Chemical Coatings. Theory and Practice [in Russian], Khimiya, Leningrad (1990).Google Scholar
  27. 27.
    I. V. Suminov, P. N. Belkin, A. V. Èpel’fel’d, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolyte Modification of the Surfaces of Metals and Alloys [in Russian], Tekhnosfera, Moscow (2011), Vol. 2.Google Scholar
  28. 28.
    Yu. A. Kuznetsov and V. Kh. Alimov, “Evaluation of the stability of electrolytes for the plasma-electrolyte oxidation of workpieces,” in: Agriscience is a Basis for the Successful Development of the AIC and Conservation of Ecosystems [in Russian], Volgograd SAU, Volgograd (2012), Vol. 2, pp. 251 – 254.Google Scholar
  29. 29.
    V. F. Berdikov, “Application of corundum coatings on aluminum supports by the method of microarc oxidation,” Vestn. Mashinost., No. 4, 64 – 65 (1991).Google Scholar
  30. 30.
    A. V. Krasikov, M. A. Markov, and A. D. Bykova, “Study of the formation of ceramic coatings by the microarc oxidation in borate electrolytes,” Izv. Sankt-Peterburg Gos. Tekhologich. Inst. (Tekh. Univ.), No. 36(62), 41 – 44 (2016).Google Scholar
  31. 31.
    Yu. M. Lakhtin and V. P. Leont’eva, Materials Science [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  32. 32.
    V. I. Kubantsev, B. V. Farmakovskii, E. M. Ryazanov, et al., “Production of metallic composite protective coatings by the method of thermodiffusion in alternating electromagnetic fields,” Vopros. Materialoved., No. 3 (79), 47 – 59 (2014).Google Scholar
  33. 33.
    D. A. Gerashchenkov, B. V. Farmakovskii, E. A. Samodelkin, and E. Yu. Gerashchenkova, “Investigation of the adhesion strength of composite reinforced coatings of the metal – nonmetal system obtained by the method of cold gas-dynamic spraying,” Vopros. Materialoved., No. 2 (78), 103 – 117 (2014).Google Scholar
  34. 34.
    D. A. Gerashchenkov, A. F. Vasil’ev, B. V. Farmakovskii, A. Ch. Mashek, “Investigation of the temperature of flow in the process of cold gas-dynamic spraying of functional coatings,” Vopros. Materialoved., No. 1 (77), 87 – 96 (2014).Google Scholar
  35. 35.
    I. V. Gorynin, B. V. Farmakovskii, D. A. Gerashchenkov, and A. F. Vasil’ev, A Method for the Production of Nanostructured Functionally Gradient Wear-Resistant Coatings [in Russian], Patent 2354749 of Russian Federation, No. 2007113724/02, Submitted 12.04.07, Publ. 10.05.09.Google Scholar
  36. 36.
    B. V. Farmakovskii, D. A. Gerashchenkov, R. Yu. Bystrov, et al., “Wear-resistant functionally gradient coatings based on quasicrystals obtained by the method of supersound cold gas-dynamic spraying,” Vopros. Materialoved., 90(2), 130 – 135 (2017).Google Scholar
  37. 37.
    D. A. Gerashchenkov and A. S. Oryshchenko, “Aluminomatrix functional coatings with high microhardness obtained from composite powders of the Al–Sn + Al2O3 system by the method of cold gas-dynamic spraying,” Vopros. Materialoved., No. 3 (83), 100 – 107 (2015).Google Scholar
  38. 38.
    M. A. Markov, A. V. Krasikov, D. A. Gerashchenkov, et al., “Synthesis of wear-resistant ceramic coatings on steel materials with complex application of the methods of supersound heterophase transfer and microarc oxidation,” Ogneupor. Tekh. Keram., No. 10, 30 – 35 (2016).Google Scholar
  39. 39.
    A. M. Makarov, D. A. Gerashchenkov, and A. F. Vasil’ev, “Optimization of the parameters of the process of spraying of coatings by the GDCS method under the conditions of production on an example of aluminum powder,” Vopros. Materialoved., 90(2), 116 – 123 (2017).Google Scholar
  40. 40.
    M. A. Markov, A. A. Kukina, and Yu. A. Fadin, “Rapid evaluation of the tribological properties of wear-resistant materials,” Izv. Vuzov. Priborostr., 59(8), 641 – 644 (2016).CrossRefGoogle Scholar
  41. 41.
    Yu. A. Fadin, M. A. Markov, and S. S. Ordan’yan, “Evaluation of the wear resistance of materials based on aluminum oxide,” Ogneupor. Tekh. Keram., No. 4/5, 8 – 10 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. A. Markov
    • 1
    Email author
  • A. D. Bykova
    • 1
  • A. V. Krasikov
    • 1
  • B. V. Farmakovskii
    • 1
  • D. A. Gerashchenkov
    • 1
  1. 1.“Prometei” CRSI of Structural Materials“Kurchatov Institute” SRCSt.-PetersburgRussia

Personalised recommendations