Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 199–206 | Cite as

Thermal Conductivity and Wear Resistance of A359/(SiC + Si3N4) Hybrid Composites Prepared by Squeeze Casting

  • E. A. M. Shalaby
  • A. Churyumov
  • M. Abou El-Khairb
  • A. Daoud
Article
  • 20 Downloads

Thermal parameters and wear are considered with dry sliding for hybrid composites based on an A359 matrix prepared by squeeze casting. Composites are strengthened with addition of 5, 10, and 15 wt.% (SiC + Si3N4). Wear of A359/(SiC + Si3N4) composites proceeds under a load in the range 20 – 60 N with a sliding rate of 2.75 m/sec. It is found that A359/(SiC + Si3N4) composite exhibits relatively low thermal conductivity and better wear resistance than alloy A359. Friction coefficients and surface contact temperature for specimens of composite A359/(SiC + Si3N4) increase as there is an increase in (SiC + Si3N4) content within them. In studying worn surfaces it is detected that A359/(SiC + Si3N4) composite is covered with iron oxide that plays the role of a self-lubricating layer. The better wear resistance index for A359/(SiC + Si3N4) composites makes it possible to use them in the automobile industry.

Keywords

dry strengthening addition thermal conductivity wear friction coefficient 

Notes

The authors thank the Russian Federation Ministry of Education and Science for financial aid in the framework of Increase Competitiveness Program of NITU MISiS.

References

  1. 1.
    A. Daoud and M. T. Abou El-Khair, “Wear and friction behavior of sand cast brake rotor made of A359 – 20 vol. % SiC particle composites sliding against automobile friction material,” Tribology Int., 43, 544 – 553 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Suresh, N. S. V. Moorthi, S. C. Vettivel, et al., “Effect of graphite addition on mechanical behavior of Al6061/TiB2 hybrid composite using acoustic emission,” Mater. Sci. Eng. A, 612, 16 – 27 (2014).CrossRefGoogle Scholar
  3. 3.
    H. Kala, K. K. S. Mer, and S. Kumar, “A review on mechanical and tribological behavior of stir cast aluminum matrix composites,” Procedia Mater. Sci., 6, 1951 – 1960 (2014).CrossRefGoogle Scholar
  4. 4.
    N. C. H. Kaushik and R. N. Rao, “The effect of wear parameters and heat treatment on two body abrasive wear of Al–SiC–Cr hybrid composites,” Tribology Int., 96, 184 – 190 (2016).CrossRefGoogle Scholar
  5. 5.
    G. S.Wang and L. Geng, “Microstructural changes of SiCw/6061Al composite during compression at temperatures below and above the solidus of the matrix alloy,” Mater. Chem. Phys., 96, 2 – 8 (2006).CrossRefGoogle Scholar
  6. 6.
    M. Kok “Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method,” Composites: Part A, 37m 457 – 464 (2006).CrossRefGoogle Scholar
  7. 7.
    B. N. Sarada, P. L. Srinivasa Murthy, and G. Ugrasen, “Hardness and wear characteristics of hybrid aluminium metal matrix composites produced by stir casting technique,” Mater. Today: Proceedings, 2, 2878 – 2885 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. Liu, Z. Han, and H. Cong, “Effects of sliding velocity and normal load on the tribological behavior of a nanocrystalline Al based composite,” Wear, 268, 976 – 983 (2010).CrossRefGoogle Scholar
  9. 9.
    S. Suresh, N. S. V. Moorthi, N. Vettivel, and S. C. Selvakumar, “Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology,” Mater. Des., 59, 383 – 396 (2014).CrossRefGoogle Scholar
  10. 10.
    J. Liu, J. Binner, and R. Higginson, “Dry sliding wear behaviour of co-continuous ceramic foam / aluminium alloy interpenetrating composites produced by pressureless infiltration,” Wear, 276/277 94 – 104 (2012).CrossRefGoogle Scholar
  11. 11.
    S. K. Chaudhury, A. K. Singh, C. S. Sivaramakrishnan, and S. C. Panigrahi, “Wear and friction behavior of spray formed and stir cast Al–2Mg–11TiO2 composites,” Wear, 258, 759 – 767 (2005).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, W. M. Rainforth, H. Jones, and M. Lieblich, “Dry wear behaviour and its relation to microstructure of novel 6092 aluminium alloy–Ni3Al powder metallurgy composite,” Wear, 251, 1421 – 1432 (2001).CrossRefGoogle Scholar
  13. 13.
    J. C. Walker, W.M. Rainforth, and H. Jones, “Lubricated sliding wear behaviour of aluminium alloy composites,” Wear 259, 577 – 589 (2005).CrossRefGoogle Scholar
  14. 14.
    A. Daoud, “Wear performance of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration,” Mater. Lett., 58, 3206 – 3013 (2004).CrossRefGoogle Scholar
  15. 15.
    A. Lekatou, A. E. Karantzalis, A. Evangelou, et al., “Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behavior,” Mater. Des., 65, 1121 – 1135 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Mazahery and M. O. Shabani, “Influence of the hard coated B4C particulates on wear resistance of Al–Cu alloys,” Composites: Part B, 43, 1302 – 1308 (2012).CrossRefGoogle Scholar
  17. 17.
    P. Ravindran, K. Manisekar, R. Narayanasamy, and P. Narayanasamy, “Tribological behavior of powder metallurgy processed aluminium hybrid composites with the addition of graphite solid lubricant,” Ceram. Internat., 39, 1169 – 1182 (2013).CrossRefGoogle Scholar
  18. 18.
    M. V. Gorshenkov, S. D. Kaloshkin, V. V. Tcherdyntsev, et al., “Dry sliding friction of Al-based composites reinforced with various boron-containing particles,” J. Alloys Compd., 536, S126 – S129 (2012).CrossRefGoogle Scholar
  19. 19.
    N. Natarajan, S. Vijayarangan, and I. Rajendran, “Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material,” Wear, 261, 812 – 822 (2006).CrossRefGoogle Scholar
  20. 20.
    A. Daoud, M. T. Abou El-Khair, and P. Rohatgi, “Wear and friction behavior of near eutectic Al–Si + ZrO2 or WC particle composites,” Compos. Sci. Technol., 64, 1029 – 1040 (2004).CrossRefGoogle Scholar
  21. 21.
    C. S. Ramesh and R. Keshavamurthy, “Slurry erosive wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites,” Mater. Des., 32, 1833 – 1843 (2011).CrossRefGoogle Scholar
  22. 22.
    P. Sharma, S. Sharma, and D. Khanduja, “Production and some properties of Si3N4 reinforced aluminium alloy composites,” J. Asian Ceram. Soc., 3, 352 – 359 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. S. Kim, K. T. Kim, and S. J. Kim, “Sliding wear behavior of Al/SiC composites fabricated by thermal spray process against different counterparts,” Key Eng. Mater., 353358, 844 – 847 (2007).CrossRefGoogle Scholar
  24. 24.
    K. Mizuuchi, K. Inoue, Y. Agari, et al., “Processing and thermal properties of Al/AlN composites in continuous solid–liquid co-existent state by spark plasma sintering,” Compos. : Part B, 43, 1557 – 1563 (2012).CrossRefGoogle Scholar
  25. 25.
    Y. S. Kim and K. T. Kim, “Wear behavior of SiC reinforced metal matrix composites fabricated by thermal spray process,” Key Eng. Mater., 326 – 328, 1845 – 1848 (2006).CrossRefGoogle Scholar
  26. 26.
    M. J. Ghazali, W. M. Rainforth, and H. Jones, “The wear of wrought aluminium alloys under dry sliding conditions,” Tribology Int., 40, 160 – 169 (2007).CrossRefGoogle Scholar
  27. 27.
    I. L. Tangen, Y. Yu, T. Grande, et al., “Preparation and characterisation of aluminium nitride–silicon carbide composites,” Ceram. Internat., 30, 931 – 938 (2004).CrossRefGoogle Scholar
  28. 28.
    N. M. Kumar, S. S. Kumaran, and L. A. Kumaraswamidhas, “High temperature investigation on EDM process of Al 2618 alloy reinforced with Si3N4, AlN and ZrB2 in-situ composites,” J. Alloys Compd., 663, 755 – 758 (2016).CrossRefGoogle Scholar
  29. 29.
    B. N. Pramila Bai, B. S. Ramasesh, and M. K. Surappa, “Dry sliding wear of A356–Al–SiCp composites,” Wear, 157, 295 – 304 (1992).CrossRefGoogle Scholar
  30. 30.
    S. Chaudhury, C. Sivaramakrishnan, and S. Panigrahi, “A new spray forming technique for the preparation of aluminium rutile (TiO2) ex situ particle composite,” J. Mater. Proc. Technol., 145, 385 – 390 (2004).CrossRefGoogle Scholar
  31. 31.
    M. T. Abou El-Khair, “Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys,” Mater. Lett., 59, 894 – 900 (2005).CrossRefGoogle Scholar
  32. 32.
    A. B. Gurcan and T. N. Baker, “Wear behaviour of AA6061 aluminium alloy and its composites, ”Wear 188, 185 – 191 (1995).CrossRefGoogle Scholar
  33. 33.
    S. K. Sharma, B. V. M. Kumar, K. Y. Lim, et al., “Erosion behavior of SiC – WC composites,” Ceram. Internat. 40, 6829 – 6839 (2014).CrossRefGoogle Scholar
  34. 34.
    W. Zhaohui, W. Xu-dong, Z. Yu-xin, and D. Wen-bo, “SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic method,” Trans. Nonferrous Met. Soc. China, 20, 1029 – 1032 (2010).CrossRefGoogle Scholar
  35. 35.
    A. P. Shen Shaga, Ch. Sun, and Q. Jiang, “Lamellar-interpenetrated Al–Si–Mg/SiC composites fabricated by freeze casting and pressureless infiltration,” Mater. Sci. Eng. A, 630, 78 – 84 (2015).CrossRefGoogle Scholar
  36. 36.
    L. Micele, G. Palombarini, S. Guicciardi, and L. Silvestroni, “Tribological behaviour and wear resistance of a SiC–MoSi2 composite dry sliding against Al2O3,” Wear, 268, 368 – 375 (2010).CrossRefGoogle Scholar
  37. 37.
    N. Mathan Kumar, S. Senthil Kumaran, and L. A. Kumaraswamidhas, “An investigation of mechanical properties and material removal rate, tool wear rate in EDM machining process of Al2618 alloy reinforced with Si3N4, AlN and ZrB2 composites,” J. Alloys Compd., 650, 318 – 327 (2015).CrossRefGoogle Scholar
  38. 38.
    C. S. Ramesh, R. Keshavamurthy, S. Pramod, and P. G. Koppad, “Abrasive wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites,” J. Mater. Process. Technol., 211, 1423 – 1431 (2011).CrossRefGoogle Scholar
  39. 39.
    X. Zi-yang, C. Guo-qin, W. Gao-hui, et al., “Effect of volume fraction on microstructure and mechanical properties of Si3N4/Al composites,” Trans. Nonferrous Met. Soc. China, 21, s285 – s289 (2011).CrossRefGoogle Scholar
  40. 40.
    H. B. Michael Rajan, S. Ramabalan, I. Dinaharan, and S. J. Vijay, “Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites,” Mater. Des., 44, 438 – 445 (2013).CrossRefGoogle Scholar
  41. 41.
    J.W. Kaczmar, K. Pietrzak, and W. Wlosinski, “The production and application of metal matrix composite materials,” J. Mater. Process. Technol., 106, 58 – 67 (2000).CrossRefGoogle Scholar
  42. 42.
    M. M. Schwartz, Composite Materials. Volume II: Processing, Fabrication and Applications, ASM International (1997).Google Scholar
  43. 43.
    M. T. Abou El-Khair, A. Daoud, and A. N. Abdel, “Effect of casting technology on the wear behaviour of A356 Al–Al2O3 or ZrO2 composites,” 4th Arab Cast Conference (2002).Google Scholar
  44. 44.
    A. Daoud, M. T. Abou El-Khair, and A. N. Abdel Azim, “Microstructure and wear behavior of squeeze cast 7075 Al–Al2O3 particle composites,”14th International Offshore and Polar Engineering Conference (2004).Google Scholar
  45. 45.
    K. Mizuuchi, K. Inoue, Y. Agari, et al., “Thermal properties of diamond particle dispersed aluminum matrix composites fabricated in continuous solid–liquid co-existent state by SPS,” J. Jpn. Soc. Powder Metall., 56, 438 – 443 (2009).CrossRefGoogle Scholar
  46. 46.
    A. Eucken, “Heat transfer in ceramic refractory materials: calculation from thermal conductivities of constituents,” Fortchg. Gebiete Ingenieurw. B. Forschungsheft, 16, 353 – 360 (1932).Google Scholar
  47. 47.
    T. Maiyajima and Y. Iwai, “Effects of reinforcements on sliding wear behavior of aluminum matrix composites,” Wear, 255, 606 – 616 (2003).CrossRefGoogle Scholar
  48. 48.
    H. Zhang, M. W. Chen, K. T. Ramesh, et al., “Tensile behavior and dynamic failure of aluminum 6092/B4C composites,” Mater. Sci. Engineer. A, 433, 70 – 82 (2006).CrossRefGoogle Scholar
  49. 49.
    P. Cavaliere, E. Cerri, and P. Leo, “Effect of heat treatments on mechanical properties and damage evolution of thixoformed aluminium alloys,” Mater. Charact., 55, 35 – 42 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. A. M. Shalaby
    • 1
  • A. Churyumov
    • 1
  • M. Abou El-Khairb
    • 2
  • A. Daoud
    • 2
  1. 1.FGAOU VO NITU MISiSMoscowRussia
  2. 2.Central Metallurgical Scientific-Research InstituteCairoEgypt

Personalised recommendations