Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 179–183 | Cite as

Phase Composition and Microstructure of Reaction-Bonded Boron-Carbide Materials

  • S. N. Perevislov
  • V. Shcherbak
  • M. V. Tomkovich
Article
  • 8 Downloads

Porous boron-carbide billets containing different amounts of carbon (0 – 15 wt%) were infiltrated with molten silicon to produce dense materials (ρ = 99.6% of theoretical) from starting B4C powders with d0.5 90 and 12.5 μm. The phase composition and microstructure of the material were studied. A solid solution of boron carbide in silicon was determined to be present.

Keywords

reaction-bonded boron carbide (RBBC) reaction sintering siliconizing secondary silicon carbide 

Notes

Acknowledgments

The work was financially supported by the Russian Foundation for Basic Research Project No. 17-03-00863\18.

References

  1. 1.
    M. K. Aghajanian, B. N. Morgan, J. R. Singh, et al., “A new family of reaction bonded ceramics for armor applications,” in: Ceramic Armor Materials by Design, Ceramic Transactions, Vol. 134, J. W. McCauley, A. Crowson, et al. (eds.), American Ceramic Society, Westerville, Ohio (2002), pp. 527 – 539.Google Scholar
  2. 2.
    S. Hayun, N. Frage, M. P. Dariel, et al., “Dynamic Response of B4C–SiC Ceramic Composites,” in: Ceramic Armor and Armor Systems II, Ceramic Transactions, Vol. 178, E. Medvedovski (ed.), American Ceramic Society, Westerville, Ohio (2006), pp. 147 – 156.Google Scholar
  3. 3.
    S. Hayun, N. Frage, and M. P. Dariel, “The morphology of ceramic phases in BxC–SiC–Si infiltrated composites,” J. Solid State Chem., 179(9), 2875 – 2879 (2006).CrossRefGoogle Scholar
  4. 4.
    S. Hayun, D. Rittel, N. Frage, and M. P. Dariel, “Static and dynamic mechanical properties of infiltrated B4C–Si composites,” Mater. Sci. Eng., A, 487(1), 405 – 409 (2008).CrossRefGoogle Scholar
  5. 5.
    A. K. Suri, C. Subramanian, J. K. Sonber, and T. C. Murthy, “Synthesis and consolidation of boron carbide: a review,” Int. Mater. Rev., 55(1), 4 – 40 (2010).CrossRefGoogle Scholar
  6. 6.
    C. P. Zhang, H. Q. Rue, X. Y. Yue, and W. Wang, “Studies on the RBBC ceramics fabricated by reaction bonded SiC,” Rare Met. Mat. Eng., 40, 536 – 539 (2011).Google Scholar
  7. 7.
    S. Hayun, A. Weizmann, M. P. Dariel, and N. Frage, “Microstructural evolution during the infiltration of boron carbide with molten silicon,” J. Eur. Ceram. Soc., 30(4), 1007 – 1014 (2010).CrossRefGoogle Scholar
  8. 8.
    S. Hayun, H. Dilman, M. P. Dariel, et al., “The effect of carbon source on the microstructure and the mechanical properties of reaction bonded boron carbide,” in: Advances in Sintering Science and Technology, Ceramic Transactions, Vol. 209, R. K. Bordia and E. A. Olevsky (eds.), American Ceramic Society, (2010), p. 29.Google Scholar
  9. 9.
    P. Barick, D. C. Jana, and N. Thiyagarajan, “Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics,” Ceram. Int., 39(1), 763 – 770 (2013).CrossRefGoogle Scholar
  10. 10.
    N. Golubeva, L. Plyasunkova, I. Kelina, E. Antonova, and A. Zhuravlev, “Study of reaction-bonded boron carbide properties,” Refract. Ind. Ceram., 55(5), 42 – 46 (2015).CrossRefGoogle Scholar
  11. 11.
    L. S. Sigl and H. J. Kleebe, “Core/rim structure of liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc., 76, 773 – 776 (1993).CrossRefGoogle Scholar
  12. 12.
    S. N. Perevislov, “Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives,” Glass Ceram., 70(7/8), 265 – 268 (2013).CrossRefGoogle Scholar
  13. 13.
    D. D. Nesmelov and S. N. Perevislov, “Reaction sintered materials based on boron carbide and silicon carbide,” Glass Ceram., 71(9/10), 313 – 319 (2015).CrossRefGoogle Scholar
  14. 14.
    C. Zhang, H. Ru, H. Zong, et al., “Coarsening of boron carbide grains during the infiltration of porous boron carbide preforms by molten silicon,” Ceram. Int., 42(16), 18681 – 18691 (2016).CrossRefGoogle Scholar
  15. 15.
    X. Li, D. Jiang, J. Zhang, et al., “Reaction-bonded B4C with high hardness,” Int. J. Appl. Ceram. Technol., 13(3), 584 – 592 (2016).CrossRefGoogle Scholar
  16. 16.
    Y. Zheng, S. Wang, M. You, et al., “Fabrication of nanocomposite Ti(C, N)-based cermet by spark plasma sintering,” Mater. Chem. Phys., 92(1), 64 – 70 (2005).CrossRefGoogle Scholar
  17. 17.
    S. Hayun, A. Weizmann, H. Dilman, et al., “Rim region growth and its composition in reaction bonded boron carbide composites with core-rim structure,” J. Phys.: Conf. Ser., 176(1), 012009 (2009).Google Scholar
  18. 18.
    S. Hayun, A.Weizmann, M. P. Dariel, and N. Frage, “The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide-based reaction-bonded composites,” Int. J. Appl. Ceram. Technol., 6(4), 492 – 500 (2009).CrossRefGoogle Scholar
  19. 19.
    S. N. Perevislov, A. S. Lysenkov, and S. V. Vikhman, “Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C,” Inorg. Mater., 53(4), 376 – 380 (2017).CrossRefGoogle Scholar
  20. 20.
    S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Glass Ceram., 73(7/8), 249 – 252 (2016).CrossRefGoogle Scholar
  21. 21.
    S. N. Perevislov, A. S. Lysenkov, D. D. Titov, and M. V. Tomkovich, “Hot-pressed ceramic SiC?YAG materials,” Inorg. Mater., 53(2), 206 – 211 (2017).CrossRefGoogle Scholar
  22. 22.
    Yu. F. Kargin, A. S. Lysenkov, S. N. Ivicheva, et al., “Microstructure and properties of silicon nitride ceramics with calcium aluminate additions,” Inorg. Mater., 46(7), 799 – 803 (2010).CrossRefGoogle Scholar
  23. 23.
    Yu. F. Kargin, A. S. Lysenkov, S. N. Ivicheva, et al., “Hot-pressed Si3N4 ceramics containing CaO–Al2O3–AlN modifying additive,” Inorg. Mater., 48(11), 1158 – 1163 (2012).CrossRefGoogle Scholar
  24. 24.
    V. Sirota, O. Lukianova, V. Krasilnikov, et al., “Microstructural and physical properties of magnesium oxide-doped silicon nitride ceramics,” Results Phys., 6, 82 – 83 (2016).CrossRefGoogle Scholar
  25. 25.
    L. Chen, W. Lengauer, P. Ettmayer, et al., “Fundamentals of liquid phase sintering for modern cermets and functionally graded cemented carbonitrides (FGHCC),” Int. J. Refract. Met. Hard Mater., 18(6), 307 – 322 (2000).CrossRefGoogle Scholar
  26. 26.
    N. Frage, L. Levin, and M. P. Dariel, “The effect of the sintering atmosphere on the densification of B4C ceramics,” J. Solid State Chem., 177(2), 410 – 414 (2004).CrossRefGoogle Scholar
  27. 27.
    D. Mallick, T. K. Kayal, J. Ghosh, et al., “Development of multi-phase B–Si–C ceramic composite by reaction sintering,” Ceram. Int., 35(4), 1667 – 1669 (2009).CrossRefGoogle Scholar
  28. 28.
    M. P. Dariel and N. Frage, “Reaction bonded boron carbide: Recent developments,” Adv. Appl. Ceram., 111(5/6), 301 – 310 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. N. Perevislov
    • 1
  • V. Shcherbak
    • 1
  • M. V. Tomkovich
    • 2
  1. 1.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia
  2. 2.A. F. Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations