Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 175–178 | Cite as

Sintering of Synthetic Magnesium Oxide

  • I. D. Kashcheev
  • K. G. Zemlyanoi
  • E. A. Voskretsova

Results are reported on the sintering ability of pure synthetic magnesium oxide (MgO) using variously pretreated eutectic sintering additives. It was established that the sintering ability of synthetic MgO was affected by the type of precursors used to prepare both the MgO and eutectic sintering additives. The best sintering ability was observed for MgO prepared from magnesium bicarbonate. The sintering additive made of natural quartzite and technical aluminum and magnesium hydroxides was most effective.


magnesium oxide sintering mechanical activation eutectic additives bulk density 


  1. 1.
    L. M. Aksel’rod, “Development of the refractory sector – Response to consumer requests,” Nov. Ogneupory, No. 3, 107 – 122 (2013).Google Scholar
  2. 2.
    A. N. Smirnov, “Main tendencies in refractory market development;
  3. 3.
    Magnesium raw materials (magnesite and brucite) and magnesite powders in the CIS: Production, Market and Forecast (3rd Ed.), Infomine Research Group, InfoMain, Moscow, 2011, 137 pp.Google Scholar
  4. 4.
    E. A. Visloguzova, I. D. Kashcheev, and K. G. Zemlyanoi, Refract. Ind. Ceram., “Analysis of the effect of periclase-carbon refractory quality on converter lining life,” 54(2), 83 – 87 (2013).CrossRefGoogle Scholar
  5. 5.
    I. D. Kashcheev, K. G. Zemlyanoi, V. M. Ust’yantsev, and E. A. Voskretsova, Refract. Ind. Ceram., “Study of thermal decomposition of natural and synthetic magnesium compounds,” Refract. Ind. Ceram., 56(5), 522 – 529 (2015).CrossRefGoogle Scholar
  6. 6.
    V. N. Zyryanova, “Use of Mg-containing slags to produce construction materials,” Candidate Dissertation, Novosibirsk, 1987, 249 pp.Google Scholar
  7. 7.
    V. A. Perepelitsyn, V. M. Rytvin, V. A. Koroteev, et al., Technogenic Mineral Raw Material of the Urals [in Russian], RIO UrB RAS, Ekaterinburg, 2013, 332 pp.Google Scholar
  8. 8.
    V. A. Khusnutdinov, “Physicochemical bases for technology development of nontraditional Mg-containing raw materials based on pure oxide and other Mg compounds,” Doctoral Dissertation, Kazan, 2000, 434 pp.Google Scholar
  9. 9.
    V. V. Prokov’eva and Z. V. Bagaushchinov, Magnesium Silicates and Production of Construction Ceramics [in Russian], Zolotoi Orel, St. Petersburg, 2005, 160 pp.Google Scholar
  10. 10.
    L. B. Khoroshavin, V. A. Perepelitsyn, and V. A. Kononov, Magnesium Refractories: Handbook [in Russian], Intermet Inzhiniring, Moscow, 2001, 576 pp.Google Scholar
  11. 11.
    D. A. Kramer, Current Mining of Olivione and Serpentine, U. S. Geological Survey Open-Pile Report, Reston, Virginia, 2002, 256 pp.Google Scholar
  12. 12.
    M. A. Shand, The Chemistry and Technology of Magnesia, John Wiley & Sons, Inc., 2006, 191 pp.CrossRefGoogle Scholar
  13. 13.
    M. A. Shand, The Chemistry and Technology of Magnesia, John Wiley & Sons, Inc., 2006, 263 pp.CrossRefGoogle Scholar
  14. 14.
    N. F. Kosenko and N. V. Filatova, “Magnesium oxide sintering regulation by mechanochemical treatment of various types,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 52(9), 81 – 84 (2009).Google Scholar
  15. 15.
    I. D. Kashcheev and K. G. Zemlyanoi, “Properties of powders of fused spinels and periclase pulverized by different techniques,” Refract. Ind. Ceram., 46(1), 42 – 48 (2005).CrossRefGoogle Scholar
  16. 16.
    I. D. Kashcheev and K. G. Zemlyanoi, “Effect of milling method on chromite surface composition and sintering,” Refract. Ind. Ceram., 55(6), 549 – 554 (2014).CrossRefGoogle Scholar
  17. 17.
    V. I. Lysenko, “Ceramics from MgO nanopowders: Fabrication and properties,” Nanoindustriya, No. 4 (66), 94 – 97 (2016).CrossRefGoogle Scholar
  18. 18.
    I. D. Kashcheev, K. K. Sterlov, and P. S. Mamykin, Chemical Engineering of Refractories [in Russian], Internet Inzhiniring, Moscow, 2007, 746 pp.Google Scholar
  19. 19.
    I. Allenshtein, et al., in: Refractory Materials. Structure, Properties, Testing, G. Rouchka and C. Vutnau (eds.) [translated from German], Intermet Inzhiniring, Moscow, 2010, 392 pp.Google Scholar
  20. 20.
    A. A. Evteev and N. A. Makarov, “Sintering of corundum ceramics modified with eutectic additives,” Usp. Khim. Khim. Tekhnol., 23(7) (100), 53 – 58 (2009).Google Scholar
  21. 21.
    D. V. Akinshin, A. V. Soloshchev, M. A. Vartanyan, and N. A. Makarov “Sintering kinetics of corundum ceramics with a eutectic additive,” Usp. Khim. Khim. Tekhnol., 31(1) (182), 91 – 93 (2017).Google Scholar
  22. 22.
    Yu. K. Nepochatov, E. V. Malikova, P. M. Pletnev, and A. A. Bogaev, “Effect of complex additives on sintering and armor properties of corundum ceramic,” Ogneupory Tekh. Keram., No. 10, 14 – 19 (2013).Google Scholar
  23. 23.
    A. A. Evteev, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater. [VIAM], No. 2 (38), 12 – 19 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. D. Kashcheev
    • 1
  • K. G. Zemlyanoi
    • 1
  • E. A. Voskretsova
    • 1
  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations