Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 151–155 | Cite as

Structural Changes in Refractory Calcium Aluminate Cement Concrete

  • Yu. R. Krivoborodov
  • S. V. Samchenko
  • T. V. Kuznetsova
Article
  • 38 Downloads

The influence of both organic and inorganic additives to calcium aluminate cement on the processes of hydration and structure formation of concrete both at normal and elevated temperatures is investigated here. The results of investigating phase transformations in hardened calcium aluminate samples during heating from 20 to 900°C are given. The structure change mechanism and the reasons for the reduction of the strength of concrete under the influence of high temperatures are described.

Keywords

calcium aluminates hardening refractory concrete modifying additives 

References

  1. 1.
    I. D. Kashcheev, M. G. Ladygichev, and V. L. Gusovsky, Unshaped Refractories [in Russian], reference in two volumes, 2nd ed., Ed. I. D. Kashcheev, Teplotekhnik, Moscow (2004) 400 p.Google Scholar
  2. 2.
    K. D. Nekrasov, “State and perspective of the development of scientific research and application of heat-resistant concretes” [in Russian], in: Research in the Field of Heat-Resistant Concrete, Coll. of works of the Research Institute of Concrete and Reinforced Concrete (NIIZhB), Moscow (1981) p. 14 – 30.Google Scholar
  3. 3.
    T. V. Kuznetsova and J. Talaber, Alumina Cement [in Russian], Stroiizdat, Moscow (1989) 267 p.Google Scholar
  4. 4.
    M. C. Alonso, J. Vera-Agullo, L. Guerreiro, et al., “Aluminate based cement for concrete to be used as thermal energy storage in solar thermal electricity plants,” Cement Concrete Res., 82, 74 – 86 (2016).CrossRefGoogle Scholar
  5. 5.
    Wasim Khaliq and Hammad Anis Khan, “High temperature material properties of calcium aluminate cement concrete,” Constr. Build. Mater., 94, 475 – 487 (2015).CrossRefGoogle Scholar
  6. 6.
    Yulong Wang, Boquan Zhu, Xiangcheng Li, and Pingan Chen, “Effect of dispersants on the hydrate morphologies of spinel-containing calcium aluminate cement and on the properties of refractory castables,” Ceram. Int., 42(1), part A, 711 – 720 (2016).CrossRefGoogle Scholar
  7. 7.
    M. Heikal, M. M. Radwan, and O. K. Al-Duaij, “Physico-mechanical characteristics and durability of calcium aluminate blended cement subject to different aggressive media,” Constr. Build. Mater., 78, 379 – 385 (2015).CrossRefGoogle Scholar
  8. 8.
    I. Yu. Burlov, Yu. A. Burlov, and Yu. R. Krivoborodov, “Obtaining aluminate and alumoferritic clinkers in a plasma type furnace unit” [in Russian], J. Tsement i Ego Primenenie (Cement and Its Application), No. 6, 25 – 28 (2002).Google Scholar
  9. 9.
    Yongpan Tian, Xiaolin Pan, Haiyan Yu, and Ganfeng Tu, “Formation mechanism of calcium aluminate compounds based on high-temperature solid-state reaction,” J. Alloys Compd., 670, 96 – 104 (2016).CrossRefGoogle Scholar
  10. 10.
    Di Zhang, Xiaolin Pan, Haiyan Yu, and Yuchun Zhai, “Mineral transition of calcium aluminate clinker during high-temperature sintering with low-lime dosage,” J. Mater. Sci. Technol., 31(12), 1244 – 1250 (2015).CrossRefGoogle Scholar
  11. 11.
    S. V. Samchenko, Y. R. Krivoborodov, and I. Y. Burlov, “Usage of aluminiferous waste in the production of aluminate cements,” 17th International Multidisciplinary Scientific Geoconference, SGEM 2017, Bulgaria, 17(62), 465 – 472 (2017).Google Scholar
  12. 12.
    V. A. Perepelitsyn, V. M. Rytvin, S. I. Gil’verg, et al., Ferroalloy Aluminothermic Slags [in Russian], Ural’skij Rabochij, Ekaterinburg (2014) 368 p.Google Scholar
  13. 13.
    K. Arbi, A. Palomo, A. Fernández-Jiménez, “Alkali-activated blends of calcium aluminate cement and slag / diatomite,” Ceram. Int., 39(8), 9237 – 9245 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Mladenoviè, B. Mirtiè, A. Meden, and V. Z. Serjun, “Calcium aluminate rich secondary stainless-steel slag as a supplementary cementitious material,” Constr. Build. Mater., 116, 216 – 225 (2016).CrossRefGoogle Scholar
  15. 15.
    E. M. M. Ewais, N. M. Khalil, M. S. Amin, et al., “Utilization of aluminum sludge and aluminum slag (dross) for the manufacture of calcium aluminate cement,” Ceram. Int., 35(8), 3381 – 3388 (2009).CrossRefGoogle Scholar
  16. 16.
    K. D. Nekrasov, V. V. Zhukov, and V. F. Gulyaeva, Heavy Concrete in Conditions of Elevated Temperatures [in Russian], Stroiizdat, Moscow (1972) 128 p.Google Scholar
  17. 17.
    T. V. Kouznetsova, Y. R. Krivoborodov, and A. A. Abdel Kader, “Influence of minor components on the phase composition of high aluminate cements,” 3rd International Symposium on Cement and Concrete, New Delhi, Vol. 1, VIII-31 – VIII-34 (1993).Google Scholar
  18. 18.
    Yu. R. Krivoborodov and A. A. Boyko, “Influence of mineral additives on the hydration of alumina cement” [in Russian], Tekhnika i Tekhnologiya Silikatov, No. 4, 12 – 15 (2011).Google Scholar
  19. 19.
    S. V. Samchenko, “Hydration and properties of corrosion-resistant aluminate cement with the addition of calcium carbonate” [in Russian], Tekhnika i Tekhnologiya Silikatov, 10(1/2), 12 – 19 (2003).Google Scholar
  20. 20.
    Yu. A. Abzaev, Yu. S. Sarkisov, T. V. Kuznetsova, et al., “Analysis of the structural-phase state of monocalcium aluminate” [in Russian], Inzhenerno-Stroitel’nyj Zhurnal, No. 3, 56 – 62 (2014).Google Scholar
  21. 21.
    T. V. Kuznetsova and S. V. Samchenko, “Microscopy of cement production materials” [in Russian], MIKKhiS, Moscow (2007) 304 p.Google Scholar
  22. 22.
    GOST 4478 – 78. “Reagents. Sulfosalicylic acid, 2-aqueous. Technical specifications (with the change No. 1)” [in Russian], Standartinform, Moscow (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu. R. Krivoborodov
    • 1
  • S. V. Samchenko
    • 2
  • T. V. Kuznetsova
    • 1
  1. 1.D. I. Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2.Moscow State University of Civil EngineeringMoscowRussia

Personalised recommendations