Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 115–123 | Cite as

Directly-Bonded Periclase-Chromite Refractory Corrosion Mechanism in an RH-Degasser Suction Pipe

  • L. M. Aksel’rod
  • T. V. Yarushina
  • A. A. Platonov
  • A. O. Migashkin
  • I. V. Anoshkin
  • A. A. Bessol’nikov
  • M. A. Eroshin
Article
  • 25 Downloads

Results are provided for a study of refractory objects based on fuzed periclase after service in the suction pipe of an RH-degasser in two metallurgical enterprises. In one enterprise the pipe operates in contact with slag, containing fluorspar with an alumina slag-forming component as a homogenizing addition, and in the second with slag for whose homogenization only fluorspar is used. In both cases, but in different pipe service conditions, there are 100 melts, and the operating duration is 1550 – 1800 min. It is established that the depth of molten slag component filtration into refractory depends on the form slag homogenizing additive in the steel-pouring ladle. Slag containing a combination of feldspar with alumina slag-forming additive penetrates into the refractory microstructure to a greater depth, which leads to a change in the initial phase composition of an object with formation of a considerable amount of secondary phases.

Keywords

RH-degasser suction pipe periclase-chromite refractory slag-forming additive corrosion mechanism 

References

  1. 1.
    Yu. A. Minaev and V. V. Yakovlev, Physical Chemistry in Metallurgy (Thermodynamics. Hydrodynamics. Kinetics): Textbook [in Russian], MiSIS, Moscow (2001).Google Scholar
  2. 2.
    L. M. Akselrod, et al., Refractories for Industrial Units and Boilers: Ref. Ed., in 2 Vol., Vol. 2 Refractory Service (I. D. Kashcheev, editor) [in Russian[, Intermet Inzhiniring (2002).Google Scholar
  3. 3.
    P. T. Jones, J. Vleugels, B. Blanpain, et al., “A study of slag infiltrated magnesia chromite refractories using hydrid microwave heating,” J. Eur. Ceram. Soc., No. 22, 903 – 916 (2002).CrossRefGoogle Scholar
  4. 4.
    J. Mosser, G. Buchebner, and K. Dösinger, “New high-quality MgO–Cr2O3-bricks and Cr-free alternatives for the lining of RH / DH-vessels,” Veitsch Radex Rundschau, No. 1, 11 – 23 (1997).Google Scholar
  5. 5.
    K. V. Simonov, V. P. Chernyavskaya, L. D. Bocharov, et al., “Refractories based on Fuzed periclase-chromite material for extra-furnace steel degassing units,” Ogneupory, No. 8, 5 – 12 (1976).Google Scholar
  6. 6.
    S. A. Suvorov, “Study in the field of physicochemical bases of slag wear and refractory manufacturing technology with participation of periclase, spinelid, and alumina,” Dis. Doc. Techn. Sci., Leningrad (1973).Google Scholar
  7. 7.
    V. L. Balkevich, Engineering Ceramics [in Russian], Izd. Lit. po Stroit, Moscow (1968).Google Scholar
  8. 8.
    I. D. Kashcheev, N. Yu. Novozhilov, and N. E. Mezentseva, “Study of mixes of the MgO–Al2O3–Cr2O3 system,” Ogneupory, No. 10, 55 – 58 (1980).Google Scholar
  9. 9.
    L. V. Klyucharov and S. A. Suvoirov, “Action of iron melts on spinelid-periclase refractories,” Ogneupory, No. 3, 34 – 41 (1966).Google Scholar
  10. 10.
    D. I. Poluboyarinov and I. Ya. Popel’skii (editors) Ceramics of Highly Refractory Oxides: Handbook [in Russian], Metallurgiya, Moscow (1977).Google Scholar
  11. 11.
    J. H. Chesters and C. W. Parmelee, “The measurement of reaction rates at high temperatures,” J. Am. Ceram. Soc., 17(13), 50 – 59 (1934).CrossRefGoogle Scholar
  12. 12.
    W. Jander and W. Stamm, “Jtscher of amorg allgenchem,” J. Am. Ceram. Soc., 199, 165 – 182 (1931).Google Scholar
  13. 13.
    Yu. D. Kuznetsov, S. A. Suvorov, and A. D. Mel’nikov, “Wear of spinelid and spinelid-periclase refractories under slag action,” Ogneupory, No. 3, 18 (1975).Google Scholar
  14. 14.
    A. S. Berzhnoi and V. M. Tsynkina, Collection of Materials on the Question of the Refractory Industry, No. 12 [in Russian], Metallurgizdat, Moscow (1940)Google Scholar
  15. 15.
    V. I. Gladyshevskii, E. E. Cherkashin, and A. M. Fersman, Neorgan. Materialy, 1(6), 1354 – 1401 (1965).Google Scholar
  16. 16.
    l. V. Klyucharov, “Phase transformations and changes in some engineering properties of highly refractory materials of the MgO–Al2O3–Cr2O3 system with action of CaO and Fe2O3,” Proc. Meeting on Chemistry of Oxides at High Temperature, Leningrad (1967).Google Scholar
  17. 17.
    V. A. Rovnushkin, É. A. Visloguzova, S. A. Spirin, et al., “Study of the effect of ladle slag composition and refractories on the lining life of a RH-degasser,” Byull. Chern. Met., No. 4, 47 – 50 (2005).Google Scholar
  18. 18.
    V. A. Rovnushkin, L. M. Aksel’rod, L. A. Smirnov, et al., “RH-degasser refractory corrosion mechanism by lime-silica slags of different basicity,” Refract. Indust. Ceram., 56(2), 113 – 118 (2015).CrossRefGoogle Scholar
  19. 19.
    A. B. Sibikin, E. S. Borisovskii, F. S. Kaplan, et al, “Effect of the structural parameters of refractories on their slag impregnation in the units used for vacuum refining of steels,” Refractories, 31(9/10) 543 – 550 (1990).CrossRefGoogle Scholar
  20. 20.
    V. A. Rovnushkin, E. A. Visloguzova, S. A. Spirin, et al., “Composition of ladle slag and refractory materials and its effect on the wear resistance of the lining of an RH vacuum degasser,” Refract. Indust. Ceram., 46(3), 193 – 196 (2005).CrossRefGoogle Scholar
  21. 21.
    Å. A. Visloguzova, A. A. Metelkin, L. V. Zorikhina, et al., “The effect of degassing technology parameters and the quality of periclase-chromite refractories on their wear resistance in vacuum chamber lining,” Refract. Indust. Ceram., 47(5), 288 – 290 (2006).CrossRefGoogle Scholar
  22. 22.
    F. Mel’kher and G. Garmus, “Corrosion mechanisms for refractories used in metal extra-furnace treatment,” Novye Ogneupory, No. 2, 25 – 30 (2011).Google Scholar
  23. 23.
    E. V. Burmistrova, R. I. Abdrakhmanov, and A. Yu. Igoshin, “Experience of operating circulating degassers Nos. 1 and 2 under OCW conditions,” Stal’, No. 2, 22 – 23 (2012).Google Scholar
  24. 24.
    S. I. Popel’ A. I. Sotnikov, and V. N. Boronenkov, Theory of Metallurgical Processes: Textbook [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  25. 25.
    Y. A. Frenkel’, Kinetic Theory of Liquids [in Russian], Nauka, Leningrad (1975).Google Scholar
  26. 26.
    S. Wright, L. Zhang, S. Sun, and S. Jahanshahi, “Viscosity of a CaO–MgO–Al2O3–SiO2 melt containing spinel particles at 1646 K,” Metall. Mater. Trans., 31B, 97 – 104 (2000).Google Scholar
  27. 27.
    M.-K. Cho, M.-A. Van Ende, T.-H. Eun, and I.-H. Jung, “Investigation of slag-refractory interaction for the Ruhrstahl Heraeus (RH) vacuum degassing process in steelmaking,” J. Eur. Ceram. Soc., 32, 1503 – 1517 (2012).CrossRefGoogle Scholar
  28. 28.
    V. I. Yavoiskii, Yu. V. Kryakovskii, V. I. Grigor’ev, et al., Steel Metallurgy: Textbook [in Russian], Metallurgiya, Moscow (1983)Google Scholar
  29. 29.
    A. M. Bigaev and V. A. Bigaev, Steel Metallurgy. Theory and Technology of Steel Smelting: Textbook [in Russian], MGTU, Magnitogorsk (2000).Google Scholar
  30. 30.
    I. V. Nekrasov, “Evaluation of heterogeneous oxide melt viscosity,” Molodoi Uchenyi, No. 12, 95 – 98 (2012).Google Scholar
  31. 31.
    I. V. Nekrasov, O. Yu. Sheshkov, V. N. Nevidimov, and S. A. Istomin, “Procedure for evaluating industrial melt viscosity,” Izv. Vyssh. Uchebn. Zaved., Chern. Met., No. 4, 21 – 24 (2012).Google Scholar
  32. 32.
    M. Guo, P. T. Jones, S. Parada, et al., “Degradation mechanisms of magnesia-chromite refractories by high alumina stainless steel slags under vacuum conditions,” J. Eur. Ceram. Soc., No. 26, 3831 – 3843 (2006).CrossRefGoogle Scholar
  33. 33.
    A. A. Metelkin, O. Yu. Shshukov, I. V. Nekrasov, and D. K. Egiazar’yan, “Homogenization of ladle slags under OAO EVRAZ MTMK conditions,” Teor. Tekhnol. Metall. Proizvod. Metall. Stali, No. 1(14), 28 – 31 (2014).Google Scholar
  34. 34.
    D. S. Belyankin, V. V. Lapin, and N. A. Toropov, Physicochemical Systems of Silicate Technology (D. S. Belyakin, editor) [in Russian], Gos. Izd. Lit. Stroit. Mater., Moscow (1949).Google Scholar
  35. 35.
    L. M. Aksel’rod, M. Yu. Turchin, M. A. Eroshin, T. V. Yarushina, and A. G. Zhil’tsova, RF Patent 3634140. Claim 09.29.2016, Publ. 10.24.2017, Bull. No. 30.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. M. Aksel’rod
    • 1
  • T. V. Yarushina
    • 2
  • A. A. Platonov
    • 2
  • A. O. Migashkin
    • 2
  • I. V. Anoshkin
    • 3
  • A. A. Bessol’nikov
    • 4
  • M. A. Eroshin
    • 2
  1. 1.OOO Gruppa MagnezitMoscowRussia
  2. 2.OOO Gruppa MagnezitSatkaRussia
  3. 3.OOO Gruppa MagnezitMagnitogorskRussia
  4. 4.OOO Gruppa MagnezitNizhnyi TagilRussia

Personalised recommendations