Refractories and Industrial Ceramics

, Volume 59, Issue 1, pp 95–99 | Cite as

Study of Subsurface Layer Treatment During Liquid-Phase Impregnation of CCCM

  • A. M. KolesnikovaEmail author
  • V. N. Anikin
  • S. A. Eremin
  • Zh. B. Balgin

Impregnation of a two-dimensional reinforced carbon-carbon composite material (CCCM) is studied. The aim of the work is to study impregnation of CCCM pore space with such compounds as MoSi2 and TaSi2. For this purpose liquid-phase impregnation is used by placing plates of Si and Mo on a CCCM surface and holding at 1500°C. The structure of the specimens obtained is studied and it is possible to establish the depth of impregnated layer, and phase and elemental analysis make it possible to establish element distribution over the impregnated layer thickness.


CCCM impregnation molybdenum disilicide silicon silicon carbide 


  1. 1.
    J. Dong, C. Jia, M. Wang, et al., “Improved mechanical properties of carbon-reinforced epoxy composites by growing carbon black on carbon fiber surface,” Compos. Sci. Technol., 6, 350 – 363 (2017).Google Scholar
  2. 2.
    X. Jina, X. Fana, C. Lu, et al., “Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites,” J. Europ. Ceram. Soc., 56, 24 – 32 (2016).Google Scholar
  3. 3.
    S. Wang, F. Zeng, Y. Li, et al., “Oxidation mechanism of SiC-zirconia-glass ceramic coated carbon/carbon ñomposites at 1123 – 1273 K,” Mater. Res. Bull., 5, 25 – 31 (2017).Google Scholar
  4. 4.
    H. Jinn, S. Meng, X. Zhang, et al., “Effects of oxygen partial pressure on the oxidation of ZrB2–SiC–graphite composites at 1800°C,” Ceram. Internat., 4, 6480 – 6486 (2016).CrossRefGoogle Scholar
  5. 5.
    F. Shu, S. Liu, H. Y. Zhao, et al., “Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder,” J. Alloys Compd., 15, 84 – 93 (2017).Google Scholar
  6. 6.
    G. Y. Fu, L. Q. Wei, X. M. Zhang, et al., “A high-silicon anti-oxidation coating for carbon steel at high temperature,” Surf. Coat. Technol., 12, 15 – 25 (2016).Google Scholar
  7. 7.
    F. Sua, P. Huanga, J.Wub, et al., “Creep behavior of C/SiC composite in hot oxidizing atmosphere and its mechanism,” Ceram. Internat., 11, 56 – 63 (2016).Google Scholar
  8. 8.
    J. Dai, J. Sha, J. I. Shao, et al., “In-situ growth of SiC nanostructures and their influence on anti-oxidation capability of C/SiC composites,” Fire Safety, 25, 78 – 80 (2017).Google Scholar
  9. 9.
    T. Li, Y. Duan, K. Jin, et al., “Dynamic compressive fracture of C/SiC composites at different temperatures: microstructure and mechanism,” Internat. J. Impact Engineering, 63, 45 – 51 (2017).Google Scholar
  10. 10.
    X. Fan, W. Huang, H. Liu, et al., “Bond stability and oxidation resistance of BSAS-based coating on C/SiC composites,” Surf. Coat. Technol., 309, 35 – 46 (2017).CrossRefGoogle Scholar
  11. 11.
    B. Dua, C. Honga, Q. Qu, et al., “Oxidative protection of a carbon-bonded carbon fiber composite with double-layer coating of MoSi2–SiC whisker and TaSi2–MoSi2–SiC whisker by slurry method,” Ceram. Internat., 70, 52 – 65 (2016).Google Scholar
  12. 12.
    S. Eremin, V. Anikin, I. Burmistrov, et al., “Parameters of chemical vapor deposition on a structure and the properties of nanostructured TaC coating on a carbon composite material,” Nanomechanics Science and Technology: An International Journal, 5(3), 181 – 189 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. M. Kolesnikova
    • 1
    Email author
  • V. N. Anikin
    • 1
  • S. A. Eremin
    • 1
  • Zh. B. Balgin
    • 1
  1. 1.FGBOU VO NIU Moscow State Building UniversityMoscowRussia

Personalised recommendations