Implied risk aversion: an alternative rating system for retail structured products

  • H. FinkEmail author
  • S. Geissel
  • J. Sass
  • F. T. Seifried


This article proposes implied risk aversion as a rating methodology for retail structured products. Implied risk aversion is based on optimal expected utility risk measures as introduced by Geissel et al. (Stat Risk Model 35(1–2):73–87, 2017) and, in contrast to standard V@R-based ratings, takes into account both the upside potential and the downside risks of such products. In addition, implied risk aversion is easily interpreted in terms of an individual investor’s risk aversion: a product is attractive for an investor if his individual relative risk aversion is smaller than the product’s implied risk aversion. We illustrate our approach in a case study with more than 15,000 short-term warrants on DAX that highlights some differences between our rating system and the traditional V@R-based approach.


Structured products Risk measures Optimal expected utility Implied risk aversion 

JEL Classification

G11 D81 



All authors are grateful for the comments and suggestions of three anonymous referees.


  1. Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking and Finance, 26, 1487–1503.CrossRefGoogle Scholar
  2. Armbruster, B., & Delage, E. (2015). Decision making under uncertainty when preference information is incomplete. Management Science, 61(1), 111–128.CrossRefGoogle Scholar
  3. Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1997). Thinking coherently. Risk Magazine, 10(11), 68–72.Google Scholar
  4. Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.CrossRefGoogle Scholar
  5. Baeumer, B., & Meerschaert, M. M. (2010). Tempered stable Lévy motion and transit super-diffusion. Journal of Computational and Applied Mathematics, 233(10), 2438–2448.CrossRefGoogle Scholar
  6. Barndorff-Nielsen, O. E., & Levendorskii, S. (2001). Feller processes of normal inverse Gaussian type. Quantitative Finance, 1, 318–331.CrossRefGoogle Scholar
  7. Barndorff-Nielsen, O. E., & Shephard, N. (2001). Normal modified stable processes. Technical report, University of Oxford.Google Scholar
  8. Barsky, R. B., Kimball, M. S., Juster, F. T., & Shapiro, M. D. (1997). Preference parameters and behavioral heterogeneity: An experimental approach in the health and retirement survey. The Quarterly Journal of Economics, 112(2), 537–579.CrossRefGoogle Scholar
  9. Baule, R., & Blonski, P. (2015). The demand for warrants and issuer pricing strategies. Journal of Futures Markets, 35, 1195–1219.CrossRefGoogle Scholar
  10. Binswanger, H. P. (1981). Attitudes toward risk: Theoretical implications of an experiment in rural India. The Economic Journal, 91, 867–890.CrossRefGoogle Scholar
  11. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 87, 637–659.CrossRefGoogle Scholar
  12. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.CrossRefGoogle Scholar
  13. Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis: Forecasting and control. Englewood Cliffs: Prentice-Hall.Google Scholar
  14. Breuer, W., & Perst, A. (2007). Retail banking and behavioral financial engineering: The case of structured products. Journal of Banking and Finance, 31(3), 827–844.CrossRefGoogle Scholar
  15. Cao, J., & Rieger, M. O. (2013). Risk classes for structured products: Mathematical aspects and their implications on behavioral investors. Annals of Finance, 9(2), 167–183.CrossRefGoogle Scholar
  16. Carr, P., Geman, H., Madan, D. R., & Yor, M. (2002). The fine structure of asset returns: An empirical investigation. Journal of Business, 75, 305–332.CrossRefGoogle Scholar
  17. Celerier, C., & Vallee, B. (2014). The motives for financial complexity: An empirical investigation, HEC Paris Research Paper No. FIN-2013-1013. Retrieved May 22, 2015 from
  18. Chen, A. H., & Kensinger, J. W. (1990). An analysis of market-index certificates of deposit. Journal of Financial Services Research, 4, 93–110.CrossRefGoogle Scholar
  19. Chen, K. C., & Sears, R. S. (1990). Pricing the SPIN. Financial Management, 19, 36–47.CrossRefGoogle Scholar
  20. Cherny, A., & Madan, D. (2008). New measures for performance evaluation. The Review of Financial Studies, 22(7), 2571–2606.CrossRefGoogle Scholar
  21. Chiappori, P.-A., & Paiella, M. (2011). Relative risk aversion is constant: Evidence from panel data. Journal of the European Economic Association, 9(6), 1021–1052.CrossRefGoogle Scholar
  22. Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1, 223–236.CrossRefGoogle Scholar
  23. Delbaen, F. (2000). Coherent risk measures. Cattedra Galileiana. Pisa: Scuola Normale Superiore, Classe di Scienze.Google Scholar
  24. Delbaen, F. (2002). Coherent risk measures on general probability spaces. In Advances in finance and stochastics (Vol. 6, pp. 429–447). Springer.Google Scholar
  25. Detlefsen, K., & Scandolo, G. (2005). Conditional and dynamic convex risk measures. Finance and Stochastics, 9(4), 539–561.CrossRefGoogle Scholar
  26. Deutscher Derivate Verband. (2015). Welche Risikopräferenz haben Sie beim Kauf eines Zertifikats?.
  27. Döhrer, B., Johanning, L., Steiner, N., & Völkle, A. (2012) . Risikoberechnungs- und Klassifizierungsmethoden nach KIID und EDG. Retrieved May 22, 2015 from
  28. Döhrer, B., Johanning, L., Steiner, N., & Völkle, A. (2013) . Issuer margins for structured products in Germany.
  29. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.CrossRefGoogle Scholar
  30. Entrop, O., Schober, A., & Wilkens, M. (2013). The pricing policy of banks for exchange-traded leverage certificates: Interday and intraday effects. or
  31. European Union. (2009). DIRECTIVE 2009/65/EC. Retrieved May 22, 2015 from
  32. European Union. (2013). Regulation (EU) No 575/2013. Retrieved May 22, 2015 from
  33. Fink, H., & Mittnik, S. (2016). Quanto pricing models beyond Black-Scholes: Calibration and performance. Working paper, Ludwig Maximilian University of Munich.Google Scholar
  34. Föllmer, H., & Schied, A. (2002). Convex measures of risk and trading constraints. Finance and Stochastics, 6, 429–447.CrossRefGoogle Scholar
  35. Föllmer, H., & Schied, A. (2011). Stochastic finance (3rd ed.). Berlin, New York: Walter de Gruyter.CrossRefGoogle Scholar
  36. Friend, I., & Blume, M. E. (1975). The demand for risky assets. The American Economic Review, 65, 900–922.Google Scholar
  37. Fritelli, M., & Rosazza Gianin, E. (2002). Putting order in risk measures. Journal of Banking and Finance, 26, 1473–1486.CrossRefGoogle Scholar
  38. Geissel, S., Sass, J., & Seifried, F. (2017). Optimal expected utility risk measures. Statistics & Risk Modeling, 35(1–2), 73–87.Google Scholar
  39. Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic Review, 35, 705–730.CrossRefGoogle Scholar
  40. Heath, D. (2000). Back to the future. Plenary lecture at the First World Congress of the Bachelier Society.Google Scholar
  41. Heath, D., & Ku, H. (2004). Pareto equilibria with coherent measures of risk. Mathematical Finance, 14(2), 163–172.CrossRefGoogle Scholar
  42. Henderson, B. J., & Pearson, N. D. (2011). The dark side of financial innovation: A case study of the pricing of a retail financial product. Journal of Financial Economics, 100, 227–247.CrossRefGoogle Scholar
  43. Hens, T., & Rieger, M. O. (2014). Can utility optimization explain the demand for structured investment products? Quantitative Finance, 14(4), 673–681.CrossRefGoogle Scholar
  44. Janecek, K. (2004). What is a realistic aversion to risk for real-world individual investors? Retrieved May 22, 2015 from
  45. Kawai, R., & Masuda, H. (2012). Infinite variation tempered stable Ornstein–Uhlenbeck processes with discrete observations. Communications in Statistics-Simulation and Computation, 41(1), 125–139.CrossRefGoogle Scholar
  46. Kim, Y. S., Giacometti, R., Rachev, S. T., Fabozzi, F. J., & Mignacca, D. (2012). Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model. Annals of Operations Research, 201(1), 325–343.CrossRefGoogle Scholar
  47. Kim, Y. S., & Volkmann, D. (2013). NTS copula and finance. Applied Mathematics Letters, 26, 676–680.CrossRefGoogle Scholar
  48. Kimball, M. S., Sahm, C. R., & Shapiro, M. D. (2008). Imputing risk tolerance from survey responses. Journal of the American Statistical Association, 103(483), 1028–1038.CrossRefGoogle Scholar
  49. Merton, R. C. (1973). Rational theory of option pricing. Bell Journal of Economics and Management Science, 4, 141–83.CrossRefGoogle Scholar
  50. Meyer, D. J., & Meyer, J. (2005). Relative risk aversion: What do we know? The Journal of Risk and Uncertainty, 31(3), 243–262.CrossRefGoogle Scholar
  51. Paravisini, D., Rappoport, V., & Ravina, E. (2010). Risk aversion and wealth: Evidence from person-to-person lending portfolios. Technical report, National Bureau of Economic Research.Google Scholar
  52. Rachev, S. T. (2003). Handbook of heavy tailed distributions in finance. Amsterdam, Boston: Elsevier.Google Scholar
  53. Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–41.CrossRefGoogle Scholar
  54. Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26, 1443–1471.CrossRefGoogle Scholar
  55. Rosetto, S., & van Bommel, J. (2009). Endless leverage certificates. Journal of Banking and Finance, 33(8), 1543–1553.CrossRefGoogle Scholar
  56. Schmitz, P., & Weber, M. (2012). Buying and selling behaviour of individual investors in option-like securities. Die Betriebswirtschaft, 72, 409–426.Google Scholar
  57. Schroff, S., Meyer, S., & Burghof, H.-P. (2015). Retail investor information demand—speculating and investing in structured products. The European Journal of Finance.
  58. Sheppard, K. (2009). MFE toolbox. Retrieved May 22, 2015 from
  59. Stoimenov, P. A., & Wilkens, S. (2005). Are structured products ’fairly’ priced? An analysis of the German market for equity-linked instruments. Journal of Banking and Finance, 29, 2971–2993.CrossRefGoogle Scholar
  60. Szpiro, G. G. (1986). Measuring risk aversion: An alternative approach. The Review of Economics and Statistics, 68, 156–159.CrossRefGoogle Scholar
  61. ter Horst, J., & Veld, C. (2008). An empirical analysis of the pricing of bank issued options versus options exchange options. European Financial Management Association, 14(2), 288–314.CrossRefGoogle Scholar
  62. von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior (2nd ed.). Princeton: Princeton University Press.Google Scholar
  63. Wallmeier, M. (2011). Beyond payoff diagrams: How to present risk and return characteristics of structured products. Financial Markets and Portfolio Management, 25(3), 313–338.CrossRefGoogle Scholar
  64. Whittle, P. (1951). Hypothesis testing in time series analysis. Uppsala: Almquist and Wicksell.Google Scholar
  65. Wilkens, S., Erner, C., & Röder, K. (2003). The pricing of structured products in Germany. Journal of Derivatives, 11, 55–69.CrossRefGoogle Scholar
  66. Wilkens, S., & Stoimenov, A. (2007). The pricing of leverage products: An empirical investigation of the German market for long and short stock index certificates. Journal of Banking and Finance, 31, 735–750.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and MathematicsMunich University of Applied SciencesMunichGermany
  2. 2.HSBC GermanyDüsseldorfGermany
  3. 3.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany
  4. 4.Department IV - MathematicsUniversity of TrierTrierGermany

Personalised recommendations