Reading and Writing

, Volume 32, Issue 9, pp 2311–2325 | Cite as

The effect of written scripts’ dissimilarity over ventral and dorsal reading pathway: combined fMRI & DTI study

  • Uttam KumarEmail author
  • Prakash Padakannaya


We employed functional magnetic resonance imaging (fMRI) and diffuse tensor imaging (DTI) to study neural implications of silent reading of words in mutually comprehensible but visually and orthographically distinct languages for example Hindi and Urdu by independent groups of skilled readers. The fMRI results (conjunction analyses) showed the left inferior frontal gyrus (BA 44/45), bilateral inferior occipital (BA 18/19), bilateral superior parietal (BA 7), left pre-central region (BA 6), and bilateral inferior temporal gyrus (BA 20) as common regions for Hindi and Urdu readers. Some additional regions such as left ventral occipitotemporal, left middle frontal (BA 46), left middle occipital (BA18), and bilateral post-central regions (BA 3) were observed for Urdu readers. DTI results showed significantly higher FA value at the left inferior fronto-occipital fasciculus in Urdu speakers. Overall findings suggest strong engagement of ventral visual pathway in reading Urdu which has a visually complex deep orthography.


Urdu Hindi Ventral pathway Dorsal pathway 



We thank Vikram Singh and Dr. Alka Shukla for their support in data collection.


  1. Ashtari, M. (2012). Anatomy and functional role of the inferior longitudinal fasciculus: A search that has just begun. Developmental Medicine and Child Neurology, 54, 6–7.Google Scholar
  2. Behrens, T. E. J., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S., et al. (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50, 1077–1088.Google Scholar
  3. Bennett, C. M., Wolford, G. L., & Miller, M. B. (2009). The principled control of false positives in neuroimaging. Social Cognitive and Affective Neuroscience, 4, 417–422.Google Scholar
  4. Bolger, D. J., Hornickel, J., Cone, N. E., Burman, D. D., & Booth, J. R. (2008). Neural correlates of orthographic and phonological consistency effects in children. Human Brain Mapping, 29, 1416–1429.Google Scholar
  5. Bolger, D. J., Perfetti, C. A., & Schneider, W. (2005). Cross-cultural effect on the brain revisited: Universal structures plus writing system variation. Human Brain Mapping, 25, 92–104.Google Scholar
  6. Brauer, J., Anwander, A., Perani, D., & Friederici, A. D. (2013). Dorsal and ventral pathways in language development. Brain and Language, 127, 289–295.Google Scholar
  7. Burton, M. W., Noll, D. C., & Small, S. L. (2001). The anatomy of auditory word processing: individual variability. Brain and Language, 77, 119–131.Google Scholar
  8. Cai, Q., Paulignan, Y., Brysbaert, M., Ibarrola, D., & Nazir, T. A. (2010). The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. Cerebral Cortex, 20, 1153–1163.Google Scholar
  9. Catani, M., & De Schotten, M. T. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44, 1105–1132.Google Scholar
  10. Catani, M., & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex, 44, 953–961.Google Scholar
  11. Das, T., Padakannaya, P., Pugh, K. R., & Singh, N. C. (2011). Neuroimaging reveals dual routes to reading in simultaneous proficient readers of two orthographies. Neuroimage, 54, 1476–1487.Google Scholar
  12. Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15, 254–262.Google Scholar
  13. Duncan, K. J. K., Twomey, T., Jones, Ō. P., Seghier, M. L., Haji, T., Sakai, K., et al. (2013). Inter-and intrahemispheric connectivity differences when reading Japanese Kanji and Hiragana. Cerebral Cortex, 24, 1601–1608.Google Scholar
  14. Feldman, L. B., & Turvey, M. T. (1980). Words written in Kana are named faster than the same words written in Kanji. Language and Speech, 23, 141–147.Google Scholar
  15. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. (1994). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2, 189–210.Google Scholar
  16. Friston, K. J., Penny, W. D., & Glaser, D. E. (2005). Conjunction revisited. Neuroimage, 25, 661–667.Google Scholar
  17. Gaillard, R., Naccache, L., Pinel, P., Clémenceau, S., Volle, E., Hasboun, D., et al. (2006). Direct intracranial, FMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron, 50, 191–204.Google Scholar
  18. Harm, M. W., & Seidenberg, M. S. (1999). Phonology, reading acquisition, and dyslexia: insights from connectionist models. Psychological Review, 106, 491.Google Scholar
  19. Ibrahim, R., Eviatar, Z., & Aharon-Peretz, J. (2002). The characteristics of arabic orthography slow its processing. Neuropsychology, 16, 322.Google Scholar
  20. Jamal, N. I., Piche, A. W., Napoliello, E. M., Perfetti, C. A., & Eden, G. F. (2012). Neural basis of single-word reading in Spanish-English bilinguals. Human Brain Mapping, 33, 235–245.Google Scholar
  21. Jbabdi, S., Behrens, T. E., & Smith, S. M. (2010). Crossing fibres in tract-based spatial statistics. Neuroimage, 49, 249–256.Google Scholar
  22. Jobard, G., Crivello, F., & Tzourio-Mazoyer, N. (2003). Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neuroimage, 20, 693–712.Google Scholar
  23. Kachru, Y., & Comrie, B. (1987). Hindi-Urdu. The world’s major languages. London: Oxford University Press.Google Scholar
  24. Koyama, M. S., Stein, J. F., Stoodley, C. J., & Hansen, P. C. (2014). A cross-linguistic evaluation of script-specific effects on fMRI lateralization in late second language readers. Frontiers in human neuroscience, 8, 249.Google Scholar
  25. Kumar, U. (2014). Effect of orthography over neural regions in bilinguals: A view from neuroimaging. Neuroscience Letters, 580, 94–99.Google Scholar
  26. Liakakis, G., Nickel, J., & Seitz, R. J. (2011). Diversity of the inferior frontal gyrus—A meta-analysis of neuroimaging studies. Behavioural Brain Research, 225, 341–347.Google Scholar
  27. Ludersdorfer, P., Kronbichler, M., & Wimmer, H. (2015). Accessing orthographic representations from speech: The role of left ventral occipitotemporal cortex in spelling. Human Brain Mapping, 36, 1393–1406.Google Scholar
  28. Ludersdorfer, P., Wimmer, H., Richlan, F., Schurz, M., Hutzler, F., & Kronbichler, M. (2016). Left ventral occipitotemporal activation during orthographic and semantic processing of auditory words. NeuroImage, 124, 834–842.Google Scholar
  29. Martino, J., Brogna, C., Robles, S. G., Vergani, F., & Duffau, H. (2010). Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex, 46, 691–699.Google Scholar
  30. Meschyan, G., & Hernandez, A. E. (2006). Impact of language proficiency and orthographic transparency on bilingual word reading: An fMRI investigation. NeuroImage, 29, 1135–1140.Google Scholar
  31. Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: A comparative review. Statistical Methods in Medical Research, 12, 419–446.Google Scholar
  32. Oliver, M., Carreiras, M., & Paz-Alonso, P. M. (2016). Functional dynamics of dorsal and ventral reading networks in bilinguals. Cerebral Cortex, 27, 5431–5443.Google Scholar
  33. Padakannaya, P., Devi, M. L., Zaveria, B., Chengappa, S. K., & Vaid, J. (2002). Directional scanning effect and strength of reading habit in picture naming and recall. Brain and Cognition, 46, 484490.Google Scholar
  34. Paulesu, E., McCrory, E., Fazio, F., Menoncello, L., Brunswick, N., Cappa, S. F., et al. (2000). A cultural effect on brain function. Nature Neuroscience, 3, 91–96.Google Scholar
  35. Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10, 15–35.Google Scholar
  36. Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62, 816–847.Google Scholar
  37. Price, C. J., & Devlin, J. T. (2011). The interactive account of ventral occipitotemporal contributions to reading. Trends in Cognitive Sciences, 15, 246–253.Google Scholar
  38. Richardson, F. M., Seghier, M. L., Leff, A. P., Thomas, M. S., & Price, C. J. (2011). Multiple routes from occipital to temporal cortices during reading. The Journal of Neuroscience, 31, 8239–8247.Google Scholar
  39. Rueckl, J. G., Paz-Alonso, P. M., Molfese, P. J., Kuo, W. J., Bick, A., Frost, S. J., et al. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences, 112, 15510–15515.Google Scholar
  40. Sandak, R., Mencl, W. E., Frost, S. J., & Pugh, K. R. (2004). The neurobiological basis of skilled and impaired reading: Recent findings and new directions. Scientific Studies of Reading, 8, 273–292.Google Scholar
  41. Sarubbo, S., De Benedictis, A., Maldonado, I. L., Basso, G., & Duffau, H. (2013). Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Structure and Function, 218, 21–37.Google Scholar
  42. Schlaggar, B. L., & McCandliss, B. D. (2007). Development of neural systems for reading. Annual Review of Neuroscience, 30, 475–503.Google Scholar
  43. Seghier, M. L., Maurer, U., & Xue, G. (2014). What makes written words so special to the brain? Frontiers in Human Neuroscience, 8, 634.Google Scholar
  44. Seghier, M. L., Neufeld, N. H., Zeidman, P., Leff, A. P., Mechelli, A., Nagendran, A., et al. (2012). Reading without the left ventral occipito-temporal cortex. Neuropsychologia, 50, 3621–3635.Google Scholar
  45. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.Google Scholar
  46. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31, 1487–1505.Google Scholar
  47. Sun, Y., Yang, Y., Desroches, A. S., Liu, L., & Peng, D. (2011). The role of the ventral and dorsal pathways in reading Chinese characters and English words. Brain and Language, 119, 80–88.Google Scholar
  48. Tan, L. H., Feng, C. M., Fox, P. T., & Gao, J. H. (2001a). An fMRI study with written Chinese. NeuroReport, 12, 83–88.Google Scholar
  49. Tan, L. H., Liu, H. L., Perfetti, C. A., Spinks, J. A., Fox, P. T., & Gao, J. H. (2001b). The neural system underlying Chinese logograph reading. Neuroimage, 13, 836–846.Google Scholar
  50. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage, 16, 765–780.Google Scholar
  51. Vaid, J. (1985). Memory for script in Hindi-Urdu bilitrates. In Annual meeting of South Asian language analysis roundtable. University of Michigan, Ann Arbor.Google Scholar
  52. Vaid, J. (1995). Script directionality affects nonlinguistic performance: Evidence from Hindi and Urdu. In Scripts and literacy (pp. 295–310). Dordrecht: Springer.Google Scholar
  53. Vandermosten, M., Boets, B., Poelmans, H., Sunaert, S., Wouters, J., & Ghesquière, P. (2012a). A tractography study in dyslexia: neuroanatomic correlates of orthographic, phonological and speech processing. Brain, 135, 935–948.Google Scholar
  54. Vandermosten, M., Boets, B., Wouters, J., & Ghesquière, P. (2012b). A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neuroscience and Biobehavioral Reviews, 36, 1532–1552.Google Scholar
  55. Wu, C. Y., Ho, M. H. R., & Chen, S. H. A. (2012). A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage, 63, 381–391.Google Scholar
  56. Xue, G., Dong, Q., Chen, K., Jin, Z., Chen, C., Zeng, Y., et al. (2005). Cerebral asymmetry in children when reading Chinese characters. Cognitive Brain Research, 24, 206–214.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of NeuroimagingCentre of Biomedical Research (CBMR)LucknowIndia
  2. 2.Ashoka UniversitySonipatIndia

Personalised recommendations