Advertisement

Reading and Writing

, Volume 32, Issue 1, pp 95–114 | Cite as

Letter coding affects movement production in word writing: an English–Italian cross-linguistic study

  • Sonia KandelEmail author
  • Ronald Peereman
  • Anna Ghimenton
  • Cyril Perret
Article

Abstract

The present research is a cross-linguistic study indicating that the timing of motor production not only depends on the shape of a letter and the activation of its motor program but also on the way the orthographic representations encode the letters for spelling retrieval. English and Italian-speaking participants wrote cognate words (e.g., DISSIPATE–DISSIPARE) on a digitizer. The words contained a doublet. They were matched to words that shared the initial letters and differed on the presence of a double letter (e.g., DISSIPATE/DISGRACE in English and DISSIPARE/DISGRAZIA in Italian). The results revealed that the presence of a doublet in English and Italian words accelerated motor production with respect to control words. Word production seems to be modulated by the way orthographic representations encode letters, but the way doublet coding affects writing differs among languages. The impact of letter doubling seems to be stronger in Italian than English. The data provide further evidence indicating that the processes involved in spelling retrieval spread into the processes that regulate movement execution.

Keywords

Double letters Handwriting English Italian 

Notes

Acknowledgements

We are extremely grateful to Alfonso Caramazza for his ideas and comments related to this research. We would also like to thank the Harvard University Cognitive Neuropsychology Laboratory for allowing Sonia Kandel conduct the English experiment of the cross-linguistic study presented in this manuscript. Thanks to Géraldine Grosjacques for her help in the Italian experiment. We acknowledge funding from the Agence Nationale de la Recherche ANR ECRIRE 14-C30-0013-01) attributed to Sonia Kandel and Cyril Perret). We thank the MSHS of Poitiers (USR-CNRS 3565) for technical support.

References

  1. Afonso, O., & Álvarez, C. J. (2011). Phonological effects in handwriting production: Evidence from the implicit priming paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37(6), 1474–1483.CrossRefGoogle Scholar
  2. Afonso, O., Álvarez, C. J., & Kandel, S. (2015b). Effects of grapheme-to-phoneme probability on writing durations. Memory & Cognition, 43, 579–592.CrossRefGoogle Scholar
  3. Afonso, O., Suárez-Coalla, P., & Cuetos, F. (2015a). Spelling impairments in Spanish dyslexic adults. Frontiers in Psychology, 6. doi: 10.3389/fpsyg.2015.00466.
  4. Álvarez, C. J., Cottrell, D., & Afonso, O. (2009). Writing dictated words and picture names: Syllabic boundaries affect execution in Spanish. Applied Psycholinguistics, 30, 205–223.CrossRefGoogle Scholar
  5. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412.CrossRefGoogle Scholar
  6. Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX lexical database [CD-ROM]. Philadelphia: Linguistic Data Consortium. University of Pennsylvania.Google Scholar
  7. Bar, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278.CrossRefGoogle Scholar
  8. Berg, K. (2016). Double consonants in English: Graphemic, morphological, prosodic and etymological determinants. Reading and Writing, 29, 453–474.CrossRefGoogle Scholar
  9. Bertinetto, P. M., Burani, C., Laudanna, A., Marconi, L., Ratti, D., Rolando, C., et al. (2008). CoLFIS: Corpus e Lessico di Frequenza dell’Italiano Scritto Contemporaneo. http://www.ge.ilc.cnr.it/page.php?ID=archCoLFIS&lingua=it.
  10. Bonin, P., Peereman, R., & Fayol, M. (2001). Do phonological codes constrain the selection of orthographic codes in written picture naming? Journal of Memory and Language, 45, 688–720.CrossRefGoogle Scholar
  11. Buchwald, A., & Falconer, C. (2014). Cascading activation from lexical processing to letter-level processing in written word production. Cognitive Neuropsychology, 31, 606–621.CrossRefGoogle Scholar
  12. Caramazza, A., & Miceli, G. (1990). The structure of graphemic representations. Cognition, 37, 243–297.CrossRefGoogle Scholar
  13. Caramazza, A., Miceli, G., Villa, G., & Romani, C. (1987). The role of the graphemic buffer in spelling: Evidence from a case of acquired dysgraphia. Cognition, 26, 59–85.CrossRefGoogle Scholar
  14. Carney, E. (1994). A survey of English spelling. London: Routledge.Google Scholar
  15. Cassar, M., & Treiman, R. (1997). The beginnings of orthographic knowledge: Children’s knowledge of double letters in words. Journal of Educational Psychology, 89, 631–644.CrossRefGoogle Scholar
  16. Chang, W. (2000). Geminate vs. non-geminate consonants in Italian: Evidence from a phonetic analysis. University of Pennsylvania Working Papers in Linguistics: Vol. 7: Iss. 1, Article 6. http://repository.upenn.edu/pwpl/vol7/iss1/6.
  17. Cutler, A., Mehler, J., Norris, D., & Segui, J. (1986). The syllable’s differing role in the segmentation of French and English. Journal of Memory and Language, 25(4), 385–400.CrossRefGoogle Scholar
  18. Delattre, M., Bonin, P., & Barry, C. (2006). Written spelling to dictation: Sound-to-spelling regularity affects both writing latencies and durations. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(6), 1330–1340.CrossRefGoogle Scholar
  19. Ellis, A. W., Young, A., & Flude, B. (1987). “Afferent dysgraphia” in a patient and in normal subjects. Cognitive Neuropsychology, 4, 465–486.CrossRefGoogle Scholar
  20. Esposito, A., & Di Benedetto, M. G. (1999). Acoustical and perceptual study of gemination in Italian stops. Journal of the Acoustical Society of America, 106(4), 2051–2062.CrossRefGoogle Scholar
  21. Gili Fivela, B., & Zmarich, C. (2005). Italian geminates under speech rate and focalization changes: kinematic, acoustic, and perception data. In Eurospeech, 9th European conference on speech communication and technology. Lisbon, Portugal, September 4–8, 2005.Google Scholar
  22. Goslin, J., Galluzzi, C., & Romani, C. (2014). PhonItalia: A phonological lexicon for Italian. Behavior Research Methods, 46, 872–886.CrossRefGoogle Scholar
  23. Guinet, E., & Kandel, S. (2010). Ductus: A software package for the study of handwriting production. Behavior Research Methods, 42, 326–332.CrossRefGoogle Scholar
  24. Jenkins, J. J., & Russel, W. A. (1952). Associative clustering during recall. Journal of Abnormal and Social Psychology, 47, 818–821.CrossRefGoogle Scholar
  25. Kandel, S., Álvarez, C., & Vallée, N. (2006). Syllables as processing units in handwriting production. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 18–31.Google Scholar
  26. Kandel, S., Spinelli, E., Tremblay, A., Guerassimovitch, H. & Álvarez, C. J. (2012). Processing prefixes and suffixes in handwriting production. Acta Psychologica, 140, 187–195.CrossRefGoogle Scholar
  27. Kandel, S., Peereman, R., & Ghimenton, A. (2013). Further evidence for the interaction between central and peripheral processes: The impact of double in writing English words. Frontiers in Psychology (Research Topic “Writing words: From brain to hand(s)” – Section Cognitive Science), 4, 729.Google Scholar
  28. Kandel, S., Peereman, R., & Ghimenton, A. (2014). How do we code the letters of a word when we have to write it? Investigating double letter representation in French. Acta Psychologica, 148, 56–62.CrossRefGoogle Scholar
  29. Kandel, S., Peereman, R., Grosjacques, G., & Fayol, M. (2011). For a psycholinguistic model of handwriting production: Testing the syllable-bigram controversy. Journal of Experimental Psychology: Human Perception and Performance, 37(4), 1310–1322.Google Scholar
  30. Kandel, S., & Spinelli, E. (2010). Processing complex graphemes in handwriting production. Memory & Cognition, 38(6), 762–770.CrossRefGoogle Scholar
  31. Kandel, S., & Valdois, S. (2006a). Syllables as functional units in a copying task. Language and Cognitive Processes, 21(4), 432–452.CrossRefGoogle Scholar
  32. Kandel, S., & Valdois, S. (2006b). French and Spanish-speaking children use different visual and motor units during spelling acquisition. Language and Cognitive Processes, 21(5), 531–561.CrossRefGoogle Scholar
  33. Kawamoto, A. H., Kello, C. T., Jones, R., & Bame, K. (1998). Initial phoneme versus whole-word criterion to initiate pronunciation: Evidence based on response latency and initial phoneme duration. Journal of Experimental Psychology. Learning, Memory, and Cognition, 24, 862–885.CrossRefGoogle Scholar
  34. Krämer, M. (2009). The phonology of Italian. New York: Oxford University Press Inc.Google Scholar
  35. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2014). LmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 packages. http://CRAN.R-project.org/package=lmerTest/.
  36. Lambert, E., Alamargot, D., Larocque, D., & Caporossi, G. (2011). Dynamics of the spelling process during a copy task: Effects of regularity and frequency. Canadian Journal of Experimental Psychology, 65(3), 141–150.CrossRefGoogle Scholar
  37. Lambert, E. & Quemart, P. (2015). Ortho-syllables and syllables affect the dynamics of adjective handwriting in French. Céline Rémi; Lionel Prévost; Eric Anquetil. 17th Biennial Conference of the International Graphonomics Society, Pointe-à-Pitre, Guadeloupe. 2015, Drawing, Handwriting Processing Analysis: New Advances and Challenges. Google Scholar
  38. Levelt, W. J. M. (1989). Speaking: From intention to articulation. Boston, MA: MIT Press.Google Scholar
  39. Loporcaro, M. (1996). On the analysis of geminates in standard Italian and Italian dialects. In B. Hurch & R. A. Rhodes (Eds.), Natural phonology. The state of the art (pp. 153–188). Berlin: Mouton de Gruyter.Google Scholar
  40. Maddieson, I. (1984). Phonetic cues to syllabification. Working Papers in Phonetics, Department of Linguistics, UCLA, UC Los Angeles. http://escholarship.org/uc/item/2497n8jq.
  41. Mattei, M., & Di Benedetto, M. G. (2000). Acoustic analysis of singleton and geminate nasals in Italian. WEB-SLS: The European Student Journal of Language and Speech (online). http://acts.ing.uniroma1.it/Papers/J15-Mattei_al-EJLS00.pdf.
  42. McCloskey, M., Badecker, W., Goodman-Schulman, R. A., & Aliminosa, D. (1994). The structure of graphemic representations in spelling: Evidence from a case of acquired dysgraphia. Cognitive Neuropsychology, 11, 341–392.CrossRefGoogle Scholar
  43. Miceli, G., Benvengnú, B., Capasso, R., & Caramazza, A. (1995). Selective deficit in processing double letters. Cortex, 31, 161–171.CrossRefGoogle Scholar
  44. New, B., Pallier, C., Ferrand, L., & Matos, R. (2001). Une base de données lexicales du français contemporain: Lexique. L’Année Psychologique, 101, 447–462. http://www.lexique.org.
  45. Pacton, S., Borchardt, G., Treiman, R., Lété, B., & Fayol, M. (2014). Learning to spell from reading: General knowledge about spelling patterns influences memory for specific words. Quarterly Journal of Experimental Psychology, 67, 1019–1036.CrossRefGoogle Scholar
  46. Pacton, S., Perruchet, P., Fayol, M., & Cleeremans, A. (2001). Implicit learning out of the lab: The case of orthographic regularities. Journal of Experimental Psychology: General, 130, 401–426.CrossRefGoogle Scholar
  47. Pacton, S., Sobaco, A., Fayol, M., & Treiman, R. (2013). How does graphotactic knowledge influence children’s learning of new spellings? Frontiers in Psychology (Research Topic “Writing words: From brain to hand(s)” – Section Cognitive Science), 4(701), 1–10.Google Scholar
  48. Payne, E. M. (2005). Phonetic variation in Italian consonant germination. Journal of the International Phonetic Association, 35(2), 153–181.CrossRefGoogle Scholar
  49. Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York: Springer.CrossRefGoogle Scholar
  50. Pitt, M. A., & Myung, I. J. (2002). When a good fit can be bad. Trends in Cognitive Sciences, 6, 421–425.CrossRefGoogle Scholar
  51. Qu, A., & Damian, M. F. (2015). Cascadedness in Chinese written word production. Frontiers in Psychology, 6, 1271.CrossRefGoogle Scholar
  52. Qu, A., Damian, M. F., Zhang, Q., & Zhu, X. (2011). Phonology contributes to writing: Evidence from written word production in a nonalphabetic script. Psychological Science, 22(9), 1107–1112.CrossRefGoogle Scholar
  53. R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computiong. Vienna, Austria. http://www.R-project.org/.
  54. Rabiner, L. R., & Gold, B. (1975). Theory and application of digital signal processing. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  55. Rastle, K., Harrington, J., Palethorpe, S., & Coltheart, M. (2000). Reading aloud begins when the computation of phonology is complete. Journal of Experimental Psychology: Human Perception and Performance, 26, 1178–1191.Google Scholar
  56. Roux, J.-S., McKeeff, T. J., Grosjacques, G., Afonso, O., & Kandel, S. (2013). The interaction between central and peripheral processes in handwriting production. Cognition, 127, 235–241.CrossRefGoogle Scholar
  57. Sausset, S., Lambert, E., Olive, T., & Larocque, D. (2012). Processing of syllables during handwriting: Effects of graphomotor constraints. Quarterly Journal of Experimental Psychology, 65(10), 1872–1879.CrossRefGoogle Scholar
  58. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  59. Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage Publishers.Google Scholar
  60. Spinelli, E., Kandel, S., Guerassimovitch, H., & Ferrand, L. (2012). Graphemic cohesion effect in reading and writing complex graphemes. Language and Cognitive Processes, 27(5), 770–791.CrossRefGoogle Scholar
  61. Sternberg, S., Knoll, R. L., Monsell, S., & Wright, C. E. (1983). Control of rapid action sequences in speech and typing. Murray Hill, NJ: AT&T Bell Laboratories.Google Scholar
  62. Sternberg, S., Knoll, R. L., & Turock, D. L. (1990). Hierarchical control in the execution of action sequences: Test of two invariance properties. In M. Jeannerod (Ed.), Attention and performance XIII: Motor representation and Control. Hillsdale, NJ: Erlbaum.Google Scholar
  63. Tagliapietra, L., & McQueen, J. M. (2010). What and where in speech recognition: Geminates and singletons in spoken Italian. Journal of Memory and Language, 63, 306–323.CrossRefGoogle Scholar
  64. Tainturier, M. J., & Caramazza, A. (1996). The status of double letters in graphemic representations. Journal of Memory and Language, 36(1), 53–73.CrossRefGoogle Scholar
  65. Teulings, H. L., Thomassen, A. J. W. M., & Van Galen, G. P. (1983). Preparation of partly precued handwriting movements: The size of movement units in handwriting. Acta Psychologica, 54, 165–177.CrossRefGoogle Scholar
  66. Treiman, R., & Kessler, B. (2015). Choosing between alternative spellings of sounds: The role of context. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(7), 1154.Google Scholar
  67. Van Galen, G. P. (1991). Handwriting: Issues for a psychomotor theory. Human Movement Science, 10, 165–191.CrossRefGoogle Scholar
  68. Van Galen, G. P., Smyth, M. M., Meulenbroek, R. G. J., & Hylkema, H. (1989). The role of short-term memory and the motor buffer in handwriting under visual and non-visual guidance. In R. Plamondon, C. Y. Suen, & M. L. Simner (Eds.), Computer recognition and human production of handwriting (pp. 253–271). Singapore: World Scientific.CrossRefGoogle Scholar
  69. Venneri, A., Cubelli, R., & Caffara, P. (1994). Perseverative dysgraphia: A selective disorder in writing double letters. Neuropsychologia, 32, 923–931.CrossRefGoogle Scholar
  70. Weingarten, R. (2005). Subsyllabic units in written word production. Writing Language Litterature, 8, 43–61.Google Scholar
  71. Weingarten, R., Nottbusch, G., & Will, U. (2004). Morphemes, syllables, and graphemes in written word production. In T. Pechmann & C. Habel (Eds.), Multidisciplinary approaches to language production (pp. 529–572). Berlin: Mouton de Gruyter.Google Scholar
  72. Wing, A. M., & Baddeley, A. D. (1980). Spelling errors in handwriting: A corpus and a distributional analysis. In U. Frith (Ed.), Cognitive processes in spelling. London: Academic Press.Google Scholar
  73. Zhang, Q., & Damian, M. F. (2010). Impact of phonology on the generation of handwritten responses: Evidence from picture-word interference tasks. Memory & Cognition, 38, 519–528.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Sonia Kandel
    • 1
    Email author
  • Ronald Peereman
    • 2
  • Anna Ghimenton
    • 3
  • Cyril Perret
    • 4
  1. 1.Univ. Grenoble Alpes, GIPSA-lab (CNRS UMR 5216)Grenoble Cedex 09France
  2. 2.LPNC (CNRS UMR 5105)Univ. Grenoble AlpesGrenobleFrance
  3. 3.Univ. Lyon 2, DDL (CNRS UMR 5596)LyonFrance
  4. 4.Univ. Poitiers, CeRCA (UMR 7295 – CNRS), Poitiers – Univ. ToursToursFrance

Personalised recommendations