Reading and Writing

, Volume 32, Issue 1, pp 65–94 | Cite as

Investigating the mechanisms of written word production: insights from the written blocked cyclic naming paradigm

  • Bonnie BreiningEmail author
  • Brenda Rapp


In three experiments, we examined whether similar principles apply to written and spoken production. Using a blocked cyclic written picture naming paradigm, we replicated the semantic interference effects previously reported in spoken production (Experiment 1). Using a written spelling-to-dictation blocked cyclic naming task, we also demonstrated that these interference effects disappear when the task does not require semantically-mediated lexical selection (Experiment 2). Results are parallel to those reported for the analogous spoken production task of reading aloud. Similar results were observed in written spelling to dictation regardless of whether stimuli consisted of words with high or low probability phoneme-to-grapheme correspondences (Experiment 3) revealing the important role of non-semantically-mediated spelling routes in written word production. Overall, our results support the view that similar mechanisms underlie written and spoken production. This includes an incremental learning mechanism underlying semantically-mediated lexical selection that produces long-lived interference effects when multiple semantically similar items are repeatedly named.


Blocked cyclic naming Spelling to dictation Semantic interference Lexical selection Written production 



We are grateful for the support provided by NIH Grant DC006740 for the investigation of the neural and cognitive bases of post-stroke recovery in dysgraphia.


  1. Afonso, O., & Álvarez, C. J. (2011). Phonological effects in handwriting production: Evidence from the implicit priming paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37, 1474–1483. doi: 10.1037/a0024515.CrossRefGoogle Scholar
  2. Alario, F.-X., De Cara, B., & Ziegler, J. C. (2007). Automatic activation of phonology in silent reading is parallel: Evidence from beginning and skilled readers. Journal of Experimental Child Psychology, 97, 205–219. doi: 10.1016/j.jecp.2007.02.001.CrossRefGoogle Scholar
  3. Anderson, M. C. (2003). Rethinking interference theory: Executive control and the mechanisms of forgetting. Journal of Memory and Language. doi: 10.1016/j.jml.2003.08.006.Google Scholar
  4. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. doi: 10.18637/jss.v067.i01.CrossRefGoogle Scholar
  5. Belke, E. (2008). Effects of working memory load on lexical–semantic encoding in language production. Psychonomic Bulletin & Review, 15, 357–363. doi: 10.3758/PBR.15.2.357.CrossRefGoogle Scholar
  6. Belke, E. (2013). Long-lasting inhibitory semantic context effects on object naming are necessarily conceptually mediated: Implications for models of lexical–semantic encoding. Journal of Memory and Language, 69, 228–256. doi: 10.1016/j.jml.2013.05.008.CrossRefGoogle Scholar
  7. Belke, E., Brysbaert, M., Meyer, A. S., & Ghyselinck, M. (2005a). Age of acquisition effects in picture naming: Evidence for a lexical–semantic competition hypothesis. Cognition, 96, 45–54. doi: 10.1016/j.cognition.2004.11.006.CrossRefGoogle Scholar
  8. Belke, E., Meyer, A. S., & Damian, M. F. (2005b). Refractory effects in picture naming as assessed in a semantic blocking paradigm. The Quarterly Journal of Experimental Psychology Section A, 58, 667–692. doi: 10.1080/02724980443000142.CrossRefGoogle Scholar
  9. Belke, E., & Stielow, A. (2013). Cumulative and non-cumulative semantic interference in object naming: Evidence from blocked and continuous manipulations of semantic context. Quarterly Journal of Experimental Psychology, 66, 2135–2160. doi: 10.1080/17470218.2013.775318.CrossRefGoogle Scholar
  10. Bonin, P., Chalard, M., Méot, A., & Fayol, M. (2002). The determinants of spoken and written picture naming latencies. British Journal of Psychology, 93, 89–114. doi: 10.1348/000712602162463.CrossRefGoogle Scholar
  11. Bonin, P., Collay, S., Fayol, M., & Méot, A. (2005). Attentional strategic control over nonlexical and lexical processing in written spelling to dictation in adults. Memory & Cognition, 33, 59–75. doi: 10.3758/BF03195297.CrossRefGoogle Scholar
  12. Bonin, P., & Fayol, M. (2000). Writing words from pictures: What representations are activated, and when? Memory & Cognition, 28, 677–689. doi: 10.3758/BF03201257.CrossRefGoogle Scholar
  13. Bonin, P., Fayol, M., & Peereman, R. (1998). Masked form priming in writing words from pictures: Evidence for direct retrieval of orthographic codes. Acta Psychologica, 99, 311–328. doi: 10.1016/S0001-6918(98)00017-1.CrossRefGoogle Scholar
  14. Bonin, P., Méot, A., Lagarrigue, A., & Roux, S. (2015). Written object naming, spelling to dictation, and immediate copying: Different tasks, different pathways? Quarterly Journal of Experimental Psychology, 68, 1268–1294. doi: 10.1080/17470218.2014.978877.CrossRefGoogle Scholar
  15. Bonin, P., Méot, A., Millotte, S., & Barry, C. (2013). Individual differences in adult handwritten spelling-to-dictation. Frontiers in Psychology, 4, 1–11. doi: 10.3389/fpsyg.2013.00402.CrossRefGoogle Scholar
  16. Bonin, P., Peereman, R., & Fayol, M. (2001). Do phonological codes constrain the selection of orthographic codes in written picture naming? Journal of Memory and Language, 45, 688–720.CrossRefGoogle Scholar
  17. Bonin, P., Roux, S., Barry, C., & Canell, L. (2012). Evidence for a limited-cascading account of written word naming. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 1741–1758. doi: 10.1037/a0028471.CrossRefGoogle Scholar
  18. Breining, B. L., Nozari, N., & Rapp, B. C. (2016). Does segmental overlap help or hurt? Evidence from blocked cyclic naming in spoken and written production. Psychonomic Bulletin & Review, 23, 500–506. doi: 10.3758/s13423-015-0900-x.CrossRefGoogle Scholar
  19. Brown, A. S. (1981). Inhibition in cued retrieval. Journal of Experimental Psychology: Human Learning & Memory, 7, 204–215. doi: 10.1037//0278-7393.7.3.204.Google Scholar
  20. Buchwald, A., & Rapp, B. C. (2009). Distinctions between orthographic long-term memory and working memory. Cognitive Neuropsychology, 26, 724–751. doi: 10.1080/02643291003707332.CrossRefGoogle Scholar
  21. Caramazza, A., & Hillis, A. E. (1990). Where do semantic errors come from? Cortex, 26, 95–122.CrossRefGoogle Scholar
  22. Coltheart, M. (1981). The MRC Psycholinguistic Database. Quarterly Journal of Experimental Psychology, 33A, 497–505.CrossRefGoogle Scholar
  23. Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. C. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204–256. doi: 10.1037/0033-295X.108.1.204.CrossRefGoogle Scholar
  24. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1, 42–45. doi: 10.20982/tqmp.01.1.p042.CrossRefGoogle Scholar
  25. Crowther, J. E., & Martin, R. C. (2014). Lexical selection in the semantically blocked cyclic naming task: The role of cognitive control and learning. Frontiers in Human Neuroscience, 8, 1–20. doi: 10.3389/fnhum.2014.00009.CrossRefGoogle Scholar
  26. Damian, M. F., & Als, L. C. (2005). Long-lasting semantic context effects in the spoken production of object names. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31, 1372–1384. doi: 10.1037/0278-7393.31.6.1372.CrossRefGoogle Scholar
  27. Damian, M. F., Vigliocco, G., & Levelt, W. J. M. (2001). Effects of semantic context in the naming of pictures and words. Cognition, 81, B77–B86. doi: 10.1016/S0010-0277(01)00135-4.CrossRefGoogle Scholar
  28. Delattre, M., Bonin, P., & Barry, C. (2006). Written spelling to dictation: Sound-to-spelling regularity affects both writing latencies and durations. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32, 1330–1340. doi: 10.1037/0278-7393.32.6.1330.CrossRefGoogle Scholar
  29. Ellis, A. W., & Young, A. W. (1988). Human Cognitive Neuropsychology. Hove, UK: Erlbaum.Google Scholar
  30. Fischer-Baum, S., Dickson, D. S., & Federmeier, K. D. (2014). Frequency and regularity effects in reading are task dependent: Evidence from ERPs. Language, Cognition and Neuroscience, 29, 1–14. doi: 10.1080/23273798.2014.927067.CrossRefGoogle Scholar
  31. Fischer-Baum, S., & Rapp, B. (2012). Underlying cause(s) of letter perseveration errors. Neuropsychologia, 50, 305–318. doi: 10.1016/j.neuropsychologia.2011.12.001.CrossRefGoogle Scholar
  32. Folk, J. R., Rapp, B., & Goldrick, M. (2002). The interaction of lexical and sublexical information in spelling: What’s the point? Cognitive Neuropsychology, 19, 653–671. doi: 10.1080/02643290244000184.CrossRefGoogle Scholar
  33. Fry, E. (2004). Phonics: A large phoneme–grapheme frequency count revised. Journal of Literacy Research, 36, 85–98.CrossRefGoogle Scholar
  34. Goldrick, M., Folk, J. R., & Rapp, B. C. (2010). Mrs. Malaprop’s neighborhood: Using word errors to reveal neighborhood structure. Journal of Memory and Language, 62, 113–134. doi: 10.1016/j.jml.2009.11.008.CrossRefGoogle Scholar
  35. Goodman, R. A., & Caramazza, A. (1986). Aspects of the spelling process: Evidence from a case of acquired dysgraphia. Language and Cognitive Processes, 1, 236–296.CrossRefGoogle Scholar
  36. Goodman-Schulman, R. (1988). Orthographic ambiguity: Comments on Baxter and Warington. Cortex, 24, 129–135.CrossRefGoogle Scholar
  37. Hanna, P. R., Hanna, J. S., Hodges, R. E., & Rudorf, E. H. (1966). Phoneme–grapheme correspondences as cues to spelling improvement. Washington, DC: US Department of Health, Education and Welfare.Google Scholar
  38. Hillis, A. E., & Caramazza, A. (1991). Mechanisms for accessing lexical representations for output: Evidence from a category-specific semantic deficit. Brain and Language, 40, 106–144. doi: 10.1016/0093-934X(91)90119-L.CrossRefGoogle Scholar
  39. Howard, D., Nickels, L., Coltheart, M., & Cole-Virtue, J. (2006). Cumulative semantic inhibition in picture naming: Experimental and computational studies. Cognition, 100, 464–482. doi: 10.1016/j.cognition.2005.02.006.CrossRefGoogle Scholar
  40. Humphreys, G. W., Evett, L., & Taylor, D. (1982). Automatic phonological priming in visual word recognition. Memory & Cognition, 10, 576–590. doi: 10.3758/BF03202440.CrossRefGoogle Scholar
  41. Janssen, N., Carreiras, M., & Barber, H. A. (2011). Electrophysiological effects of semantic context in picture and word naming. NeuroImage, 57, 1243–1250. doi: 10.1016/j.neuroimage.2011.05.015.CrossRefGoogle Scholar
  42. Jared, D. (2002). Spelling-sound consistency and regularity effects in word naming. Journal of Memory and Language, 46, 723–750. doi: 10.1006/jmla.2001.2827.CrossRefGoogle Scholar
  43. Kroll, J. F., & Stewart, E. (1994). Categorical interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of Memory and Language, 33, 149–174.CrossRefGoogle Scholar
  44. Kucera, H., & Francis, W. N. (1967). Computational analysis of present-day American English. Providence: Brown University Press.Google Scholar
  45. Landauer, T. K., Foltz, P., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25, 259–284. doi: 10.1080/01638539809545028.CrossRefGoogle Scholar
  46. McCloskey, M., Macaruso, P., & Rapp, B. (2006). Graphemeto-lexeme feedback in the spelling system: Evidence from a dysgraphic patient. Cognitive Neuropsychology, 23, 278–307. doi: 10.1080/02643290442000518.CrossRefGoogle Scholar
  47. Miceli, G., & Capasso, R. (1997). Semantic errors as neuropsychological evidence for the independence and the interaction of orthographic and phonological word forms. Language and Cognitive Processes, 12, 733–764. doi: 10.1080/016909697386673.CrossRefGoogle Scholar
  48. Mirman, D. (2014). Growth curve analysis and visualization using R. Boca Raton, FL: Chapman & Hall/CRC Press.Google Scholar
  49. Mulatti, C., Peressotti, F., Job, R., Saunders, S., & Coltheart, M. (2012). Reading aloud: The cumulative lexical interference effect. Psychonomic Bulletin & Review, 19, 662–667. doi: 10.3758/s13423-012-0269-z.CrossRefGoogle Scholar
  50. Navarrete, E., Del Prato, P., Peressotti, F., & Mahon, B. Z. (2014). Lexical retrieval is not by competition: Evidence from the Blocked Naming Paradigm. Journal of Memory and Language, 76, 253–272. doi: 10.1016/j.jml.2014.05.003.CrossRefGoogle Scholar
  51. Navarrete, E., Mahon, B. Z., & Caramazza, A. (2010). The cumulative semantic cost does not reflect lexical selection by competition. Acta Psychologica, 134, 279–289. doi: 10.1016/j.actpsy.2010.02.009.CrossRefGoogle Scholar
  52. Navarrete, E., Mahon, B. Z., Lorenzoni, A., & Peressotti, F. (2016). What can written-words tell us about lexical retrieval in speech production? Frontiers in Psychology, 6, 1–12. doi: 10.3389/fpsyg.2015.01982.CrossRefGoogle Scholar
  53. Nickels, L. (2001). Spoken word production. In B. Rapp (Ed.), The handbook of cognitive neuropsychology: What deficits reveal about the human mind (pp. 291–320). Philadelphia: Psychology Press.Google Scholar
  54. Nozari, N., Freund, M., Breining, B. L., Rapp, B. C., & Gordon, B. (2016). Cognitive control during selection and repair in word production. Language, Cognition and Neuroscience, 31, 886–903. doi: 10.1080/23273798.2016.1157194.CrossRefGoogle Scholar
  55. Oppenheim, G. M., Dell, G. S., & Schwartz, M. F. (2010). The dark side of incremental learning: A model of cumulative semantic interference during lexical access in speech production. Cognition, 114, 227–252. doi: 10.1016/j.cognition.2009.09.007.CrossRefGoogle Scholar
  56. Paap, K. R., & Noel, R. W. (1991). Dual-route models of print to sound: Still a good horse race. Psychological Research, 53, 13–24. doi: 10.1007/BF00867328.CrossRefGoogle Scholar
  57. Patterson, K. (1986). Lexical but nonsemantic spelling? Cognitive Neuropsychology, 3, 341–367.CrossRefGoogle Scholar
  58. Peereman, R., & Content, A. (1999). LEXOP: A lexical database providing orthography–phonology statistics for French monosyllabic words. Behavior Research Methods, Instruments, & Computers, 31, 376–379. doi: 10.3758/BF03207735.CrossRefGoogle Scholar
  59. Lee, C. Y., Tsai, J. L., Su, E. C. I., Tzeng, O. J. L., & Hung, D. L. (2005). Consistency, regularity, and frequency effects in naming chinese characters. Language and Linguistics, 6, 75–107.
  60. R Core Team. (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  61. Rapp, B. C., Benzing, L., & Caramazza, A. (1997). The autonomy of lexical orthography. Cognitive Neuropsychology, 14, 71–104. doi: 10.1080/026432997381628.CrossRefGoogle Scholar
  62. Rapp, B. C., & Caramazza, A. (1997). The modality-specific organization of grammatical categories: Evidence from impaired spoken and written sentence production. Brain and Language, 286, 248–286. doi: 10.1006/brln.1997.1735.CrossRefGoogle Scholar
  63. Rapp, B. C., Epstein, C., & Tainturier, M.-J. (2002). The integration of information across lexical and sublexical processes in spelling. Cognitive Neuropsychology, 19, 1–29. doi: 10.1080/0264329014300060.CrossRefGoogle Scholar
  64. Rastle, K., & Brysbaert, M. (2006). Masked phonological priming effects in English: Are they real? Do they matter? Cognitive Psychology, 53, 97–145. doi: 10.1016/j.cogpsych.2006.01.002.CrossRefGoogle Scholar
  65. Roeltgen, D. P., Rothi, L. J. G., & Heilman, K. M. (1986). Linguistic semantic agraphia: A dissociation of the lexical spelling system from semantics. Brain and Language, 27, 257–280. doi: 10.1016/0093-934X(86)90020-9.CrossRefGoogle Scholar
  66. Schnur, T. T. (2014). The persistence of cumulative semantic interference during naming. Journal of Memory and Language, 75, 27–44. doi: 10.1016/j.jml.2014.04.006.CrossRefGoogle Scholar
  67. Schnur, T. T., Schwartz, M. F., Brecher, A., & Hodgson, C. (2006). Semantic interference during blocked-cyclic naming: Evidence from aphasia. Journal of Memory and Language, 54, 199–227. doi: 10.1016/j.jml.2005.10.002.CrossRefGoogle Scholar
  68. Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96, 523–568. doi: 10.1037/0033-295X.96.4.523.CrossRefGoogle Scholar
  69. Shen, X. R., Damian, M. F., & Stadthagen-Gonzalez, H. (2013). Abstract graphemic representations support preparation of handwritten responses. Journal of Memory and Language, 68, 69–84. doi: 10.1016/j.jml.2012.10.003.CrossRefGoogle Scholar
  70. Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning & Memory, 6, 174–215. doi: 10.1037/0278-7393.6.2.174.Google Scholar
  71. Tainturier, M.-J., Moreaud, O., David, D., Leek, E. C., & Pellat, J. (2001). Superior written over spoken picture naming in a case of frontotemporal dementia. Neurocase, 7, 89–96. doi: 10.1093/neucas/7.1.89.CrossRefGoogle Scholar
  72. Tainturier, M.-J., & Rapp, B. C. (2001). The spelling process. In B. C. Rapp (Ed.), The handbook of cognitive neuropsychology: What deficits reveal about the human mind (pp. 263–290). Philadelphia: Psychology Press.Google Scholar
  73. Wheeldon, L., & Monsell, S. (1994). Inhibition of spoken word production by priming a semantic competitor. Journal of Memory and Language, 33, 332–356. doi: 10.1006/jmla.1994.1016.CrossRefGoogle Scholar
  74. Zhang, Q., & Damian, M. F. (2010). Impact of phonology on the generation of handwritten responses: Evidence from picture-word interference tasks. Memory & Cognition, 38, 519–528. doi: 10.3758/MC.38.4.519.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Cognitive ScienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations