Preparation and characterization of Cu–Mn composite oxides in N2O decomposition
- 20 Downloads
Abstract
A series of CuxMn composite oxide catalysts with different Cu/Mn molar ratios (x = 1, 1.5 and 2) was synthesized by the co-precipitation method. The catalytic performance of CuxMn in N2O decomposition has been studied with a continuous flowing microreactor system. The obtained catalysts were characterized by XRD, BET, Raman, FT-IR, ICP-AES and H2-TPR. The catalytic tests show that the CuxMn catalysts exhibit more excellent N2O catalytic decomposition activity compared with the pure CuO and Mn2O3 catalysts, and the Cu1.5Mn shows the highest catalytic activity under the reaction conditions of N2O 0.1%, GHSV 10000 h−1. The characterizations results suggest that bulk CuO and Mn2O3 existed in pure CuO and Mn2O3 catalysts, respectively. In the CuxMn catalysts, with the decreasing of x, the amount of bulk CuO gradually decreases until it disappears, while the amount of newly formed CuMn2O4 gradually increases. However, the amount of small crystal CuO increases first and then decreases, which might be considered as an important active phase that contributes to the excellent catalytic performance of CuxMn in N2O decomposition.
Keywords
CuO Mn2O3 CuMn2O4 N2O decompositionNotes
Acknowledgements
Authors gratefully acknowledge the financial support from Natural Science Foundation of Shanxi Province (201801D121043); National Natural Science Foundation of China (21673132) and Key Projects of Shanxi Coal-based Low Carbon Joint Fund (U1710221).
References
- 1.Hungate BA, Dukes JS, Shaw MR et al (2003) Science 302:1512–1513PubMedCrossRefGoogle Scholar
- 2.Li L, Xu JH, Hu JX et al (2014) Environ Sci Technol 48:5290–5297PubMedCrossRefGoogle Scholar
- 3.Vlastimil M, Marcel Š, Martin R et al (2019) Mat Sci Semicond Proc 100:113–122CrossRefGoogle Scholar
- 4.Li Y, Wang XP (2019) Catal Lett 149:1856–1863CrossRefGoogle Scholar
- 5.Xue L, Zhang CB, He H et al (2007) Appl Catal B 75:167–174CrossRefGoogle Scholar
- 6.Parks JE (2010) Science 327:1584–1585PubMedCrossRefGoogle Scholar
- 7.Wang YZ, Zheng K, Hu XB et al (2019) Mol Catal 470:104–111CrossRefGoogle Scholar
- 8.Koichi K et al (2011) Proc Eng 8:515–519Google Scholar
- 9.Wang YZ, Wei XH, Hu XB et al (2019) Catal Lett 149:1026–1036CrossRefGoogle Scholar
- 10.Pérez-Ramfrez J (2007) Appl Catal B 70:31–35CrossRefGoogle Scholar
- 11.Galle M, Agar DW, Wayzenberger O (2001) Chem Eng Sci 56:1587–1595CrossRefGoogle Scholar
- 12.Beeker KH, Kurtenbach R, Wiesen P et al (1999) Environ Sci Technol 33:4134–4139CrossRefGoogle Scholar
- 13.Li CL, Shen YS, Zhu SM, Shen SB (2014) RSC Adv 4:29107–29119CrossRefGoogle Scholar
- 14.Liu ZM, He F, Ma LL et al (2016) Catal Surv Asia 20:121–132CrossRefGoogle Scholar
- 15.Klyushina A, Pacultova K, Obalova L (2015) Reac Kinet Mech Cat 115:651–662CrossRefGoogle Scholar
- 16.Ates A (2015) Reac Kinet Mech Cat 114:421–432CrossRefGoogle Scholar
- 17.Shen Q, Li LD, He C et al (2012) Asia-Pac J Chem Eng 7:502–509CrossRefGoogle Scholar
- 18.Yu HB, Tursun M, Wang XP et al (2016) Appl Catal B 185:110–118CrossRefGoogle Scholar
- 19.Wang YZ, Hu XB, Zheng K et al (2018) Catal Commun 111:70–74CrossRefGoogle Scholar
- 20.Wang YZ, Hu XB, Zheng K et al (2018) Reac Kinet Mech Cat 123:707–721CrossRefGoogle Scholar
- 21.Franken T, Palkovits R (2015) Appl Catal B 176–177:298–305CrossRefGoogle Scholar
- 22.Yamashita T, Vannice A (1996) J Catal 161:254–262CrossRefGoogle Scholar
- 23.Bennici S, Gervasini A (2006) Appl Catal B 62:336–344CrossRefGoogle Scholar
- 24.Xue L, He H (2007) Acta Phys Chim Sin 23:664–670Google Scholar
- 25.Zhang Y, Lu HF, Huang HF et al (2008) J Catal 22:503–506Google Scholar
- 26.Li XQ, Xu J, Zhou LP et al (2006) Chin J Catal 27:369–371Google Scholar
- 27.Saputra E, Muhammad S, Sun HQ et al (2014) Appl Catal B 154–155:246–251CrossRefGoogle Scholar
- 28.Huang YH, Wang SF, Tsai AP et al (2014) Ceram Int 40:4541–4551CrossRefGoogle Scholar
- 29.Tanaka Y, Utaka T, Kikuchi R et al (2003) J Catal 215:271–278CrossRefGoogle Scholar
- 30.Du XR, Yuan ZS, Cao L et al (2008) Fuel Process Technol 89:131–138CrossRefGoogle Scholar
- 31.Tanaka Y, Takeguchi T, Kikuchi R et al (2005) Appl Catal A 279:59–66CrossRefGoogle Scholar
- 32.Yan XY, Cen SQ, Xiang LP et al (2005) Bull Sci Technol 21:521–523Google Scholar
- 33.Tang QH, Gong XN, Zhao PZ et al (2010) Appl Catal A 389:101–107CrossRefGoogle Scholar
- 34.Yu MH, Lu HF, Chen YF (2011) CIESC J 62:947–952Google Scholar
- 35.Wang WL, Li DS, Wang ZJ et al (2002) Chin J Inorg Chem 18:823–826Google Scholar
- 36.Habibi MH, Mosavi V (2017) J Mater Sci 28:11078–11083Google Scholar
- 37.Hosseini SA, Niaei A, Salari D et al (2012) Ceram Int 38:1655–1661CrossRefGoogle Scholar
- 38.Morales MR, Barbero BP, Cadús LE (2008) Fuel 8:1177–1186CrossRefGoogle Scholar
- 39.Fang D, Xie JL, Mei D (2014) RSC Adv 4:25540–25551CrossRefGoogle Scholar
- 40.Perez-Alonso FJ, Melián-Cabrera I, Granados ML et al (2006) J Catal 239:340–346CrossRefGoogle Scholar
- 41.Liu QX, Tang XS, Duan YK et al (2016) J Mol Catal 30:363–371Google Scholar
- 42.Zabilskiy M, Djinović P, Erjavec B et al (2015) Appl Catal B 163:113–122CrossRefGoogle Scholar