Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 2, pp 917–934 | Cite as

One pot menthol synthesis via hydrogenations of citral and citronellal over montmorillonite-supported Pd/Ni-heteropoly acid bifunctional catalysts

  • Abdul Karim ShahEmail author
  • Ghulamullah Maitlo
  • Aqeel Ahmed Shah
  • Iftekhar Ahmed Channa
  • Ghulam Abbas Kandhro
  • Hubdar Ali Maitlo
  • Umair Hassan Bhatti
  • Ahmed Shah
  • Abdul Qayoom Memon
  • Abdul Sattar Jatoi
  • Yeung Ho Park


Menthol synthesis is possible through citral and citronellal hydrogenations via following multistage chemical reactions such as hydrogenation and cyclization. This research mainly focuses on a design of selective, active and cost-effective metal-acid (bifunctional) catalysts for menthol production via citral and citronellal hydrogenations. More specifically, Pd and Ni metals were impregnated over acidic support (e.g., hetero-poly acid supported montmorillonite, HPA_MM). The prepared catalysts were characterized by BET, pyridine adsorption and amine titration methods. Some of the most important parameters such as metal type and loading; applied pressure and reaction time have been investigated throughout this work. The obtained results reveals that the 8 wt% Ni-HPA-MM catalyst (Cat-5) has produced 63% menthols (initial reaction rate 0.126 mmol/min) from citral hydrogenation (80 °C, 1.0 MPa) within 24 h. Similarly, during lower applied pressure (0.5 MPa), the production of menthol was significantly improved (approximately 98% of menthol, initial reaction rate ~ 0.138 mmol/min) with the application of 8 wt% Ni-HPA-MM catalyst (Cat-5) in citronellal hydrogenation. Higher menthol selectivity was achieved from both reactions (citral and citronellal hydrogenation) which might be due to the presence of strong Lewis and medium Brønsted acid sites.


Citral Citronellal Isopulegol Menthol Bifunctional catalysts 





Heteropoly acid (20% loading of Phosphotungstic acid)


Acid-treated montmorillonite


Heteropoly acid (20% loading of Phosphotungstic acid) supported acid-treated montmorillonite


Pd-loaded heteropoly acid supported acid-treated montmorillonite


Nickel loaded heteropoly acid supported acid-treated montmorillonite


5 wt% Pd-MM


2.5 wt% Pd-HPA-MM


5 wt% Pd-HPA-MM


5 wt% Ni-HPA-MM


8 wt% Ni-HPA-MM










3, 7-Dimethyl-1-octanol


Supplementary material

11144_2019_1679_MOESM1_ESM.doc (276 kb)
Supplementary material 1 (DOC 275 kb)


  1. 1.
    Mertens P, Verpoort F, Parvulescu A-N, De Vos D (2006) Pt/H-beta zeolites as productive bifunctional catalysts for the one-step citronellal-to-menthol conversion. J Catal 243(1):7–13. CrossRefGoogle Scholar
  2. 2.
    Trasarti AF, Marchi AJ, Apesteguía CR (2007) Design of catalyst systems for the one-pot synthesis of menthols from citral. J Catal 247(2):155–165CrossRefGoogle Scholar
  3. 3.
    Negoi A, Teinz K, Kemnitz E, Wuttke S, Parvulescu V, Coman S (2012) Bifunctional nanoscopic catalysts for the one-pot synthesis of (±)-menthol from citral. Top Catal 55(7–10):680–687. CrossRefGoogle Scholar
  4. 4.
    Mäki-Arvela P, Kumar N, Kubička D, Nasir A, Heikkilä T, Lehto V-P, Sjöholm R, Salmi T, Murzin DY (2005) One-pot citral transformation to menthol over bifunctional micro- and mesoporous metal modified catalysts: effect of catalyst support and metal. J Mol Catal A 240(1):72–81. CrossRefGoogle Scholar
  5. 5.
    Salminen E, Virtanen P, Kordás K, Mikkola J-P (2012) Alkaline modifiers as performance boosters in citral hydrogenation over supported ionic liquid catalysts (SILCAs). Catal Today 196(1):126–131CrossRefGoogle Scholar
  6. 6.
    Mäki-Arvela P, Kumar N, Nieminen V, Sjöholm R, Salmi T, Murzin DY (2004) Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. J Catal 225(1):155–169. CrossRefGoogle Scholar
  7. 7.
    Solodar J (1978) Asymmetric and regioselective hydrogenation of piperitenone by homogeneous rhodium complexes. J Org Chem 43(9):1787–1789. CrossRefGoogle Scholar
  8. 8.
    Negoi A, Teinz K, Kemnitz E, Wuttke S, Parvulescu VI, Coman SM (2012) Bifunctional nanoscopic catalysts for the one-pot synthesis of (±)-menthol from citral. Top Catal 55(7):680–687. CrossRefGoogle Scholar
  9. 9.
    Rojas H, Martínez JJ, Mancípe S, Borda G, Reyes P (2012) Citral hydrogenation over novel niobia and titania supported Au, Ir–Au and Ir catalysts. Reac Kinet, Mech Catal 106(2):445–455CrossRefGoogle Scholar
  10. 10.
    Mukherjee S, Vannice MA (2006) Solvent effects in liquid-phase reactions: I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects. J Catal 243(1):108–130. CrossRefGoogle Scholar
  11. 11.
    Plößer J, Lucas M, Claus P (2014) Highly selective menthol synthesis by one-pot transformation of citronellal using Ru/H-BEA catalysts. J Catal 320:189–197. CrossRefGoogle Scholar
  12. 12.
    Milone C, Gangemi C, Neri G, Pistone A, Galvagno S (2000) Selective one step synthesis of (−)menthol from (+)citronellal on Ru supported on modified SiO2. Appl Catal A 199(2):239–244. CrossRefGoogle Scholar
  13. 13.
    Ravasio N, Poli N, Psaro R, Saba M, Zaccheria F (2000) Bifunctional copper catalysts. Part II. Stereoselective synthesis of (-)-menthol starting from (+)-citronellal. Top Catal 13(3):195–199. CrossRefGoogle Scholar
  14. 14.
    Nie Y, Niah W, Jaenicke S, Chuah G-K (2007) A tandem cyclization and hydrogenation of (±)-citronellal to menthol over bifunctional Ni/Zr-beta and mixed Zr-beta and Ni/MCM-41. J Catal 248(1):1–10. CrossRefGoogle Scholar
  15. 15.
    Cortés CB, Galván VT, Pedro SS, García TV (2011) One pot synthesis of menthol from (±)-citronellal on nickel sulfated zirconia catalysts. Catal Today 172(1):21–26. CrossRefGoogle Scholar
  16. 16.
    Cirujano FG, Llabrés-i-Xamena FX, Corma A (2012) MOFs as multifunctional catalysts: one-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Trans 41(14):4249–4254. CrossRefPubMedGoogle Scholar
  17. 17.
    da Silva Rocha KA, Robles-Dutenhefner PA, Sousa EMB, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2007) Pd–heteropoly acid as a bifunctional heterogeneous catalyst for one-pot conversion of citronellal to menthol. Appl Catal A 317(2):171–174. CrossRefGoogle Scholar
  18. 18.
    Virtanen P, Karhu H, Toth G, Kordas K, Mikkola J-P (2009) Towards one-pot synthesis of menthols from citral: modifying supported ionic liquid catalysts (SILCAs) with Lewis and Brønsted acids. J Catal 263(2):209–219CrossRefGoogle Scholar
  19. 19.
    Trasarti AF, Marchi AJ, Apesteguía CR (2013) Synthesis of menthols from citral on Ni/SiO2–Al2O3 catalysts. Catal Commun 32:62–66. CrossRefGoogle Scholar
  20. 20.
    Ambrosetti A, Silvestrelli PL (2016) Cohesive properties of noble metals by van der Waals–corrected density functional theory: Au, Ag, and Cu as case studies. Phys Rev B 94(4):045124CrossRefGoogle Scholar
  21. 21.
    Yongzhong Z, Yuntong N, Jaenicke S, Chuah G-K (2005) Cyclisation of citronellal over zirconium zeolite beta—a highly diastereoselective catalyst to (±)-isopulegol. J Catal 229(2):404–413. CrossRefGoogle Scholar
  22. 22.
    Chuah GK, Liu SH, Jaenicke S, Harrison LJ (2001) Cyclisation of citronellal to isopulegol catalysed by hydrous zirconia and other solid acids. J Catal 200(2):352–359. CrossRefGoogle Scholar
  23. 23.
    Cirujano F, i Xamena FL, Corma A (2012) MOFs as multifunctional catalysts: one-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Trans 41(14):4249–4254CrossRefGoogle Scholar
  24. 24.
    Negoi A, Wuttke S, Kemnitz E, Macovei D, Parvulescu VI, Teodorescu C, Coman SM (2010) One-pot synthesis of menthol catalyzed by a highly diastereoselective Au/MgF2 catalyst. Angew Chem Int Ed 49(44):8134–8138CrossRefGoogle Scholar
  25. 25.
    Negoi A, Teinz K, Kemnitz E, Wuttke S, Parvulescu VI, Coman SM (2012) Bifunctional nanoscopic catalysts for the one-pot synthesis of (±)-menthol from citral. Top Catal 55(7–10):680–687CrossRefGoogle Scholar
  26. 26.
    Weingarten R, Tompsett GA, Conner WC, Huber GW (2011) Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites. J Catal 279(1):174–182. CrossRefGoogle Scholar
  27. 27.
    Corma A, Hamid SBA, Iborra S, Velty A (2005) Lewis and Brønsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. J Catal 234(2):340–347. CrossRefGoogle Scholar
  28. 28.
    Zabeti M, Wan Daud WMA, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90(6):770–777. CrossRefGoogle Scholar
  29. 29.
    Tanabe K, Hölderich WF (1999) Industrial application of solid acid–base catalysts. Appl Catal A 181(2):399–434. CrossRefGoogle Scholar
  30. 30.
    Yadav GD (2005) Synergism of clay and heteropoly acids as nano-catalysts for the development of green processes with potential industrial applications. Catal Surv Asia 9(2):117–137. CrossRefGoogle Scholar
  31. 31.
    Shah AK, Maitlo G, Korai RM, Unar IN, Shah AA, Khan HA, Shah SFA, Ismail U, Park YH (2019) Citronellal cyclisation to isopulegol over micro-mesoporous zsm-5 zeolite: effects of desilication temperature on textural and catalytic properties. Reac Kinet, Mech Catal 128:1–16CrossRefGoogle Scholar
  32. 32.
    Bhorodwaj SK, Dutta DK (2010) Heteropoly acid supported modified Montmorillonite clay: an effective catalyst for the esterification of acetic acid with sec-butanol. Appl Catal A 378(2):221–226. CrossRefGoogle Scholar
  33. 33.
    Timofeeva MN (2003) Acid catalysis by heteropoly acids. Appl Catal A 256(1–2):19–35. CrossRefGoogle Scholar
  34. 34.
    Farfan-Torres EM, Sham E, Grange P (1992) Pillared clays: preparation and characterization of zirconium pillared montmorillonite. Catal Today 15(3):515–526. CrossRefGoogle Scholar
  35. 35.
    Ming-li C, Yong-fu Y, Ji-zu Y, Ming-he C (2002) Preparation and properties of pillared montmorillonite by polyhydroxyl-aluminum-manganese cations. J Wuhan Univ Technol-Mater Sci Ed 17(2):43–46. CrossRefGoogle Scholar
  36. 36.
    Shah AK, Park S, Khan HA, Bhatti UH, Kumar P, Bhutto AW, Park YH (2018) Citronellal cyclisation over heteropoly acid supported on modified montmorillonite catalyst: effects of acidity and pore structure on catalytic activity. Res Chem Intermed 44(4):2405–2423. CrossRefGoogle Scholar
  37. 37.
    Flessner U, Jones DJ, Rozière J, Zajac J, Storaro L, Lenarda M, Pavan M, Jiménez-López A, Rodrı́guez-Castellón E, Trombetta M, Busca G (2001) A study of the surface acidity of acid-treated montmorillonite clay catalysts. J Mol Catal A 168(1–2):247–256. CrossRefGoogle Scholar
  38. 38.
    Bieseki L, Bertell F, Treichel H, Penha FG, Pergher SBC (2013) Acid treatments of montmorillonite-rich clay for Fe removal using a factorial design method. Mater Res 16:1122–1127CrossRefGoogle Scholar
  39. 39.
    Adams JM (1987) Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts—a review. Appl Clay Sci 2(4):309–342. CrossRefGoogle Scholar
  40. 40.
    Mishra T, Parida KM, Rao SB (1996) Transition metal oxide pillared clay: 1. A comparative study of textural and acidic properties of Fe(III) pillared montmorillonite and pillared acid activated montmorillonite. J Colloid Interface Sci 183(1):176–183. CrossRefGoogle Scholar
  41. 41.
    Bolognini M, Cavani F, Cimini M, Pozzo LD, Maselli L, Venerito D, Pizzoli F, Veronesi G (2004) An environmentally friendly synthesis of 2,4-dihydroxybenzophenone by the single-step O-mono-benzoylation of 1,3-dihydroxybenzene (resorcinol) and fries rearrangement of intermediate resorcinol monobenzoate: the activity of acid-treated montmorillonite clay catalysts. C R Chim 7(2):143–150. CrossRefGoogle Scholar
  42. 42.
    Bokade VV, Yadav GD (2011) Heteropolyacid supported on montmorillonite catalyst for dehydration of dilute bio-ethanol. Appl Clay Sci 53(2):263–271. CrossRefGoogle Scholar
  43. 43.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. CrossRefGoogle Scholar
  44. 44.
    Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141(2):347–354. CrossRefGoogle Scholar
  45. 45.
    Virtanen P, Mikkola J-P, Salmi T (2007) Kinetics of citral hydrogenation by supported ionic liquid catalysts (SILCA) for fine chemicals. Ind Eng Chem Res 46(26):9022–9031. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Abdul Karim Shah
    • 1
    • 2
    Email author
  • Ghulamullah Maitlo
    • 2
  • Aqeel Ahmed Shah
    • 3
  • Iftekhar Ahmed Channa
    • 3
    • 7
  • Ghulam Abbas Kandhro
    • 8
  • Hubdar Ali Maitlo
    • 4
  • Umair Hassan Bhatti
    • 6
  • Ahmed Shah
    • 5
  • Abdul Qayoom Memon
    • 2
  • Abdul Sattar Jatoi
    • 2
  • Yeung Ho Park
    • 1
  1. 1.Fine Chemical Process Laboratory, Department of Chemical EngineeringHanyang UniversityAnsanSouth Korea
  2. 2.Department of Chemical EngineeringDawood University of Engineering and TechnologyKarachiPakistan
  3. 3.Department of Metallurgy EngineeringNED University of Engineering and TechnologyKarachiPakistan
  4. 4.Department of Energy and Environment EngineeringDawood University of Engineering and TechnologyKarachiPakistan
  5. 5.Department of PharmaceuticsUniversity of SindhJamshoroPakistan
  6. 6.Greenhouse Gas Laboratory, Korea Institute of Energy ResearchUniversity of Science and TechnologyDaejeon-34129Republic of Korea
  7. 7.Friedrich–Alexander University Erlangen–NürnbergBavariaGermany
  8. 8.Department of Basic ScienceDawood University of Engineering and TechnologyKarachiPakistan

Personalised recommendations