Self-oscillations and surface waves during CO oxidation over Co

  • V. Yu. BychkovEmail author
  • Yu. P. Tulenin
  • M. M. Slinko
  • A. Ya. Gorenberg
  • D. P. Shashkin
  • V. N. Korchak


The paper looks into the temporal and spatial dynamics of a new oscillating system comprised of CO oxidation over Co. Reaction rate oscillations occurring in CO excess were similar to the ones observed over Ni. The periodic variation of oxygen imbalance together with the variation in colour changes during the oscillations indicated that the oscillations were closely connected with the reversible oxidation of Co to various Co oxides. The periodic oxidation/reduction of cobalt proceeded as surface waves. Unexpectedly, widely varying spatial structures and wavefront velocities were detected during the heating and cooling branches under identical reaction conditions: regular self-oscillations transforming into a “surface turbulence” state.


Self-oscillations CO oxidation Co Spatiotemporal behavior Surface waves 



This work was supported by the Russian Science Foundation (Grant No. 17-13-01057).

Supplementary material (10 mb)
Supplementary material 1 (ZIP 10287 kb)


  1. 1.
    Ertl G (2000) Adv Catal 45:1Google Scholar
  2. 2.
    Freund H-J, Meijer G, Scheffler M, Schlögl R, Wolf M (2011) Angew Chem Int Ed 50:10064CrossRefGoogle Scholar
  3. 3.
    Slinko MM, Jaeger NI (1994) Oscillatory heterogeneous catalytic systems: studies in surface sciences and catalysis. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Imbihl R, Ertl G (1995) Chem Rev 95:697CrossRefGoogle Scholar
  5. 5.
    Imbihl R (2008) Non-linear dynamics in catalytic reactions. In: Hasselbrink E, Lundqvist BI (eds) Handbook of surface science. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Rotermund HH, Jakubith S, Vonoertzen A, Ertl G (1989) J Chem Phys 91:4942CrossRefGoogle Scholar
  7. 7.
    Rotermund HH (1997) Surf Sci Rep 29:265CrossRefGoogle Scholar
  8. 8.
    Marwaha B, Annamalai J, Luss D (2001) Chem Eng Sci 56:89CrossRefGoogle Scholar
  9. 9.
    Bychkov VYu, Tulenin YP, Slinko MM, Gordienko YA, Korchak VN (2018) Catal Lett 148:653CrossRefGoogle Scholar
  10. 10.
    Bychkov VYu, Tyulenin YP, Korchak VN, Aptekar EL (2006) Appl Catal A 3042:21CrossRefGoogle Scholar
  11. 11.
    Bychkov VYu, Tyulenin YP, Slinko MM, Korchak VN (2007) Appl Catal A 321:180CrossRefGoogle Scholar
  12. 12.
    Bychkov VYu, Tyulenin YP, Slinko MM, Korchak VN (2007) Catal Lett 119:339CrossRefGoogle Scholar
  13. 13.
    McAdam DJ, Geil JW, Geil GW (1942) J Res Natl Bur Stand 28:593CrossRefGoogle Scholar
  14. 14.
    Bychkov VYu, Tulenin YP, Slinko MM, Gorenberg AYa, Korchak VN (2017) Catal Lett 147:2664CrossRefGoogle Scholar
  15. 15.
    Makeev AG, Peskov NV, Semendyaeva NL, Slinko MM, Bychkov VYu, Korchak VN (2019) Chem Eng Sci 207:644CrossRefGoogle Scholar
  16. 16.
    El-Shobaky GA, Selim MM, Hewaidy IF (1980) Surf Technol 10:55CrossRefGoogle Scholar
  17. 17.
    Gu D, Jia C-J, Weidenthaler C, Bongard H-J, Spliethoff B, Schmidt W, Schueth F (2015) J Am Chem Soc 137:11407CrossRefGoogle Scholar
  18. 18.
    Omata K, Takada T, Kasahara S, Yamada M (1996) Appl Catal A 146:255CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • V. Yu. Bychkov
    • 1
    Email author
  • Yu. P. Tulenin
    • 1
  • M. M. Slinko
    • 1
  • A. Ya. Gorenberg
    • 1
  • D. P. Shashkin
    • 1
  • V. N. Korchak
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations