Advertisement

Effect of supports on performance of Cu–Fe based catalysts for higher alcohols synthesis from syngas

  • Bin Liu
  • Yafei Li
  • Yumei DuanEmail author
  • Tao Ding
  • Ying Tang
  • Changzheng Zheng
Article
  • 9 Downloads

Abstract

In this study, a series of Cu–Fe based catalysts with Cr, Ni promoters and different supporters [activated carbon (AC), attapulgite (ATP), carbon nanotubes (CNTs)] were prepared by the co-precipitation method. The structure and surface properties of the catalysts were characterized by N2 adsorption–desorption, X-ray diffraction (XRD), scanning electronic microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), transmission electron microscopy (TEM), CO temperature-programmed desorption (CO-TPD), H2 temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) techniques. The catalysts were examined in a fixed bed for their ability to selectively convert syngas into higher alcohols. Results showed that CuFeCrNi/CNTs catalyst had the higher Brunauer–Emmett–Teller (BET) surface area (132.22 m2 g−1) and Cu–Fe alloy nanoparticle highly dispersed on the CNTs surface. Thus, the catalyst possessed the higher CO conversion (44.28%), excellent selectivity to higher alcohols (46.0%), and C2+OH/CH3OH reached 1.36 in the liquid product,which turned out to be one of the best catalysts for higher alcohol synthesis.

Keywords

Cu–Fe based catalysts Support Syngas Higher alcohols 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from Science and Technology Project of Shaanxi Province (Contract No: 2016GY-171).

Supplementary material

11144_2019_1667_MOESM1_ESM.opj (255 kb)
Supplementary material 1 (OPJ 255 kb)
11144_2019_1667_MOESM2_ESM.opj (123 kb)
Supplementary material 2 (OPJ 124 kb)
11144_2019_1667_MOESM3_ESM.opj (232 kb)
Supplementary material 3 (OPJ 233 kb)
11144_2019_1667_MOESM4_ESM.opj (457 kb)
Supplementary material 4 (OPJ 457 kb)
11144_2019_1667_MOESM5_ESM.opj (484 kb)
Supplementary material 5 (OPJ 485 kb)
11144_2019_1667_MOESM6_ESM.opj (47 kb)
Supplementary material 6 (OPJ 47 kb)
11144_2019_1667_MOESM7_ESM.opj (81 kb)
Supplementary material 7 (OPJ 82 kb)

References

  1. 1.
    Cao A, Schumann J, Wang T, Zhang L, Xiao J, Bothra P, Liu Y, Abild-Pedersen F, Nørskov JK (2018) Mechanistic insights into the synthesis of higher alcohols from syngas on CuCo alloys. ACS Catal 8(11):10148–10155.  https://doi.org/10.1021/acscatal.8b01596 CrossRefGoogle Scholar
  2. 2.
    An Y, Lin T, Yu F, Yang Y, Zhong L, Wu M, Sun Y (2017) Advances in direct production of value-added chemicals via syngas conversion. Sci China Chem 60(7):887–903.  https://doi.org/10.1007/s11426-016-0464-1 CrossRefGoogle Scholar
  3. 3.
    Gao ZH, Li SS, Tian HH, Dong WB, Liu Y, Jia L, Huang W (2017) Synthesis of ethanol from syngas over CuZnAl catalysts with different Cu/Zn/Al molar ratios in polyethylene glycol 600 medium. React Kinet Mech Catal 122(2):1117–1127.  https://doi.org/10.1007/s11144-017-1270-3 CrossRefGoogle Scholar
  4. 4.
    Luk HT, Mondelli C, Ferre DC, Stewart JA, Perez-Ramirez J (2017) Status and prospects in higher alcohols synthesis from syngas. Chem Soc Rev 46(5):1358–1426.  https://doi.org/10.1039/c6cs00324a CrossRefGoogle Scholar
  5. 5.
    Wang LX, Wang L, Zhang J, Liu XL, Wang H, Zhang W, Yang Q, Ma JY, Dong X, Yoo SJ, Kim JG, Meng XJ, Xiao FS (2018) Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew Chem Int Ed 57(21):6104–6108.  https://doi.org/10.1002/anie.201800729 CrossRefGoogle Scholar
  6. 6.
    Liu YY, Murata K, Inaba M (2014) Synthesis of mixed alcohols from synthesis gas over alkali and Fischer–Tropsch metals modified MoS2/Al2O3-montmorillonite catalysts. React Kinet Mech Catal 113(1):187–200.  https://doi.org/10.1007/s11144-014-0725-z CrossRefGoogle Scholar
  7. 7.
    Sun J, Wan S, Wang F, Lin J, Wang Y (2015) Selective synthesis of methanol and higher alcohols over Cs/Cu/ZnO/Al2O3 catalysts. Ind Eng Chem Res 54(32):7841–7851.  https://doi.org/10.1021/acs.iecr.5b01927 CrossRefGoogle Scholar
  8. 8.
    Xiang YZ, Barbosa R, Li XN, Kruse N (2015) Ternary cobalt–copper–niobium catalysts for the selective CO hydrogenation to higher alcohols. ACS Catal 5(5):2929–2934.  https://doi.org/10.1021/acscatal.5b00388 CrossRefGoogle Scholar
  9. 9.
    Lv MM, Xie W, Sun S, Wu GM, Zheng LR, Chu SQ, Gao C, Bao J (2015) Activated-carbon-supported K-Co–Mo catalysts for synthesis of higher alcohols from syngas. Catal Sci Technol 5(5):2925–2934.  https://doi.org/10.1039/c5cy00083a CrossRefGoogle Scholar
  10. 10.
    Liu JJ, Guo Z, Childers D, Schweitzer N, Marshall CL, Klie RF, Miller JT, Meyer RJ (2014) Correlating the degree of metal-promoter interaction to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. J Catal 313:149–158.  https://doi.org/10.1016/j.jcat.2014.03.002 CrossRefGoogle Scholar
  11. 11.
    Putro WS, Kojima T, Hara T, Ichikuni N, Shimazu S (2018) Acceptorless dehydrogenation of alcohols using Cu–Fe catalysts prepared from Cu–Fe layered double hydroxides as precursors. Catal Sci Technol 8(12):3010–3014.  https://doi.org/10.1039/c8cy00655e CrossRefGoogle Scholar
  12. 12.
    Hu W, Li W, Shen R (2017) Cetyltrimethylammonium bromide-promoted, ZnO-supported, and Mn-promoted Cu–Fe catalyst for the hydrogenation of CO to low-carbon alcohols. Energy Technol 5(4):557–567.  https://doi.org/10.1002/ente.201600366 CrossRefGoogle Scholar
  13. 13.
    Cao A, Yang Q, Wei Y, Zhang L, Liu Y (2017) Synthesis of higher alcohols from syngas over CuFeMg-LDHs/CFs composites. Int J Hydrogen Energy 42(27):17425–17434.  https://doi.org/10.1016/j.ijhydene.2017.02.170 CrossRefGoogle Scholar
  14. 14.
    Sun J, Cai Q, Wan Y, Wan S, Wang L, Lin J, Mei D, Wang Y (2016) Promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts. ACS Catal 6(9):5771–5785.  https://doi.org/10.1021/acscatal.6b00935 CrossRefGoogle Scholar
  15. 15.
    Beiramar JM, Griboval-Constant A, Khodakov AY (2014) Effects of metal promotion on the performance of CuZnAl catalysts for alcohol synthesis. ChemCatChem 6(6):1788–1793.  https://doi.org/10.1002/cctc.201402037 CrossRefGoogle Scholar
  16. 16.
    Ao M, Pham GH, Sage V, Pareek V (2017) Selectivity enhancement for higher alcohol product in Fischer–Tropsch synthesis over nickel-substituted La0.9Sr0.1CoO3 perovskite catalysts. Fuel 206:390–400.  https://doi.org/10.1016/j.fuel.2017.06.036 CrossRefGoogle Scholar
  17. 17.
    Anashkin YV, Ishutenko DI, Maximov VV, Pimerzin AA, Kogan VM, Nikulshin PA (2019) Effect of carrier properties on the activity of supported KCoMoS catalysts in the synthesis of alcohol from syngas. React Kinet Mech Catal 127(1):301–314.  https://doi.org/10.1007/s11144-019-01580-2 CrossRefGoogle Scholar
  18. 18.
    Wang P, Chen S, Bai Y, Gao X, Li X, Sun K, Xie H, Yang G, Han Y, Tan Y (2017) Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation. Fuel 195:69–81.  https://doi.org/10.1016/j.fuel.2017.01.050 CrossRefGoogle Scholar
  19. 19.
    Shi XP, Yu HB, Gao S, Li XY, Fang HH, Li RJ, Li YY, Zhang LJ, Liang XL, Yuan YZ (2017) Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu–Fe catalyst for the synthesis of higher alcohols from syngas. Fuel 210:241–248.  https://doi.org/10.1016/j.fuel.2017.08.064 CrossRefGoogle Scholar
  20. 20.
    Zhou M, Li J, Wang K, Xia H, Xu J, Jiang J (2017) Selective conversion of furfural to cyclopentanone over CNT-supported Cu based catalysts: model reaction for upgrading of bio-oil. Fuel 202:1–11.  https://doi.org/10.1016/j.fuel.2017.03.046 CrossRefGoogle Scholar
  21. 21.
    Wang Y, Feng Y, Jiang J, Yao J (2019) Designing of recyclable attapulgite for wastewater treatments: a review. ACS Sustain Chem Eng 7(2):1855–1869.  https://doi.org/10.1021/acssuschemeng.8b05823 CrossRefGoogle Scholar
  22. 22.
    Wang Y, Chen M, Li X, Yang Z, Liang T, Zhou Z, Cao Y (2018) Hydrogen production via steam reforming of ethylene glycol over Attapulgite supported nickel catalysts. Int J Hydrogen Energy 43(45):20438–20450.  https://doi.org/10.1016/j.ijhydene.2018.09.109 CrossRefGoogle Scholar
  23. 23.
    Pang F, Song FE, Zhang QD, Tan YS, Han YZ (2016) Study on the influence of oxygen-containing groups on the performance of Ni/AC catalysts in methanol vapor-phase carbonylation. Chem Eng J 293:129–138.  https://doi.org/10.1016/j.cej.2016.02.093 CrossRefGoogle Scholar
  24. 24.
    Pang F, Song F, Xiao H, Tan YS, Han YZ (2018) Increased dispersion of nickel particles supported on activated carbon by treating with methyl iodide. Catal Lett 148(10):3018–3023.  https://doi.org/10.1007/s10562-018-2501-6 CrossRefGoogle Scholar
  25. 25.
    Cao A, Liu GL, Wang LF, Liu JG, Yue YZ, Zhang LH, Liu Y (2016) Growing layered double hydroxides on CNTs and their catalytic performance for higher alcohol synthesis from syngas. J Mater Sci 51(11):5216–5231.  https://doi.org/10.1007/s10853-016-9823-9 CrossRefGoogle Scholar
  26. 26.
    Han X, Fang K, Zhou J, Zhao L, Sun Y (2016) Synthesis of higher alcohols over highly dispersed Cu–Fe based catalysts derived from layered double hydroxides. J Colloid Interface Sci 470:162–171.  https://doi.org/10.1016/j.jcis.2015.09.062 CrossRefGoogle Scholar
  27. 27.
    Sun C, Mao DS, Han LP, Yu J (2016) Effect of preparation method on performance of Cu–Fe/SiO2 catalysts for higher alcohols synthesis from syngas. RSC Adv 6(60):55233–55239.  https://doi.org/10.1039/c6ra07366b CrossRefGoogle Scholar
  28. 28.
    Yang X, Wei Y, Su Y, Zhou L (2010) Characterization of fused Fe–Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR. Fuel Process Technol 91(9):1168–1173.  https://doi.org/10.1016/j.fuproc.2010.03.032 CrossRefGoogle Scholar
  29. 29.
    Sun C, Mao DS, Han LP, Yu J (2016) Effect of impregnation sequence on performance of SiO2 supported Cu–Fe catalysts for higher alcohols synthesis from syngas. Catal Commun 84:175–178.  https://doi.org/10.1016/j.catcom.2016.07.003 CrossRefGoogle Scholar
  30. 30.
    Liao P, Zhang C, Zhang L, Yang Y, Zhong L, Wang H, Sun Y (2018) Higher alcohol synthesis via syngas over CoMn catalysts derived from hydrotalcite-like precursors. Catal Today 311:56–64.  https://doi.org/10.1016/j.cattod.2017.09.022 CrossRefGoogle Scholar
  31. 31.
    Zhao L, Mu XL, Liu TS, Fang KG (2018) Bimetallic Ni–Co catalysts supported on Mn–Al oxide for selective catalytic CO hydrogenation to higher alcohols. Catal Sci Technol 8(8):2066–2076.  https://doi.org/10.1039/c7cy02555f CrossRefGoogle Scholar
  32. 32.
    Hou B, Han X, Lin M, Fang K-g (2016) Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation. J Fuel Chem Technol 44(2):217–224.  https://doi.org/10.1016/S1872-5813(16)30009-3 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Bin Liu
    • 1
  • Yafei Li
    • 1
  • Yumei Duan
    • 2
    Email author
  • Tao Ding
    • 1
  • Ying Tang
    • 3
    • 4
  • Changzheng Zheng
    • 1
  1. 1.School of Environmental and Chemical EngineeringXi’an Polytechnic UniversityXi’anChina
  2. 2.Editorial Department of Journal of Yulin UniversityYulinChina
  3. 3.Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of OilfieldsXi’an Shiyou UniversityXi’anChina
  4. 4.State Key Laboratory of Petroleum Pollution ControlCNPC Research Institute of Safety and Environmental TechnologyBeijingChina

Personalised recommendations