Advertisement

Kinetic modeling of cottonseed oil transesterification with ethanol

  • Thibério P. C. Souza
  • Ronaldy J. M. C. L. Silva
  • James C. Melo
  • Isabelle C. P. Tschoeke
  • Josivan P. Silva
  • Jose G. A. Pacheco
  • José M. F. SilvaEmail author
Article
  • 12 Downloads

Abstract

This study aimed to evaluate the kinetic behavior of cottonseed oil transesterification with ethanol based on a pseudo first order kinetic model. A 23 factorial planning with three central points was performed by considering temperature, catalyst concentration and alcohol/oil molar ratio as dependent variables and biodiesel concentration as response signal. It was observed that the highest conversion was obtained for the following conditions: temperature between 50 and 70 °C, high alcohol/oil molar ratio and low percentage of catalyst. All samples were collected during time intervals of 5–10–15–30–60 and 90 min. A set of kinetic constant values were obtained for each operating condition ranging from 72 to 23l min−1. Indeed, it was possible to obtain the kinetic parameters frequency factor k0 = 5807.05 dm3*mol−1*min−1 and Ea = 16.84 kJ*mol−1 for biodiesel production with ethanol.

Keywords

Biodiesel Cottonseed oil Ethanol Kinetic modeling 

List of Symbols

GC

Gas chromatography

A

Alcohol

D

Diglyceride molecule

E

Ester

M

Monoglyceride molecule

G

Glycerin molecule

Ti

Triglyceride molecule

T

Temperature

k1

Kinetic constant of triglyceride consumption

k2

Kinetic constant of diglyceride consumption

k3

Kinetic constant of monoglyceride consumption

CT

Triglyceride concentration

CD

Diglyceride concentration

CM

Monoglyceride concentration

CAl

Alcohol concentration

K

Overall kinetic constant

Me/Mo

Ethanol/oil molar mass

A/O

Ethanol/oil molar ratio

\({\text{V}}_{{{\text{H}}_{ 2} {\text{SO}}_{ 4} }}\)

Volume of H2SO4

MMH2SO4

Molar mass of sulfuric acid

mr

Initial total mass of the reaction system (moil + mAlcohol + mKOH)

\({\text{P}}_{{{\text{H}}_{ 2} {\text{SO}}_{ 4} }}\)

Purity of the sulfuric acid

CO

Oil concentration

kr

Pseudo first order kinetic constant

kra

Second order kinetic constant

EA

Activation energy

T

Reaction temperature

PID

Proportional integral derivative

FID

Flame ionization detector

EN

European standard

vH2SO4

Volume of sulfuric acid

MAL

Mass of ethanol

A/O

Ethanol/oil molar ratio

mKOH

Mass of potassium hydroxide

moil

Mass of oil

Cat

Percentage of catalyst in terms of oil mass

mr

Initial total mass of the system

X

Conversion

RR

Molar ratio of alcohol

C

Catalyst concentration

K

Kelvin

CETENE

Northeast strategic technological center

FE

Excess to neutralize the KOH

MMHKOH

Molar mass of the potassium hidroxide.

\({\text{D}}_{{{\text{H}}_{ 2} {\text{SO}}_{ 4} }}\)

Density of the sulfuric acid.

NH

Number of hydrogen of the acid

Cfact

Correction factor of 30

Notes

Acknowledgements

The authors thank to Northeast Strategic Technological Center (CETENE) for providing raw materials and access to the industrial plant and Federal University of Pernambuco for supporting this research.

References

  1. 1.
    Rathore VS, Tyagi NB, Badoni RP (2012) Fuel 15:101–109Google Scholar
  2. 2.
    Alam MJ, Shawon SK, Sultana M, Rahman MdWMd, Khan MR (2014) Power Energy Syst: Tow Sust Energy 1:1–5Google Scholar
  3. 3.
    Onukwul OD, Emembolu LN, Ude CN, Aliozo SO, Menkiti MC (2016) Egypt J Petrol 2:1–8Google Scholar
  4. 4.
    Jain S, Sharma MP (2010) Renew Sust Energy Rev 14:763–771CrossRefGoogle Scholar
  5. 5.
    Chen JX, Hu XG, Wang XY, Xu YX, Hu EZ (2012) Adv Mat Res 578:73–77Google Scholar
  6. 6.
    Chen J, Wang X, Hu E, Yufu XX, Hu PL, Jiang S (2011) Int Conf Mat Renew Energy Env 1:288–293CrossRefGoogle Scholar
  7. 7.
    He W, Fang Z, Guo K (2013) Appl Mech Mat 36:343–346CrossRefGoogle Scholar
  8. 8.
    Joshi HC, Toler J, Walker T (2008) J A O Chem Soc. 85:357–363CrossRefGoogle Scholar
  9. 9.
    Silva RJMCL, Souza TPCS, Silva JP, Pacheco JGA, Silva JFM (2017) Braz J Chem Eng 34:811–819CrossRefGoogle Scholar
  10. 10.
    Lilja J, Warna J, Salmi T, Pettersson LJ, Ahlkvist J, Grénman H, Rönnholm M, Murzin DY (2005) Chem Eng J 115:1–12CrossRefGoogle Scholar
  11. 11.
    Alves MJS, Nascimento M, Pereira IG, Maria IM, Cardoso VL, Reis M (2013) Renew Energy 58:15–20CrossRefGoogle Scholar
  12. 12.
    Aranda DAG, Goncalves JD, Peres JS (2010) J Phys Org Chem 22:709–716CrossRefGoogle Scholar
  13. 13.
    Aniya VK, Muktham RK, Alka K, Satyavathi B (2015) Fuel 161:137–145CrossRefGoogle Scholar
  14. 14.
    Aydin H, Baydin H (2010) Renew Energy 35:588–592CrossRefGoogle Scholar
  15. 15.
    He BB, Singh AP, Thompson JC (2006) Am Soc Agric Biol Eng 49:107–112Google Scholar
  16. 16.
    Jain SK, Kumar S, Chaube A (2012) Int J Chem Eng Appl 2:101–109Google Scholar
  17. 17.
    Bikou E, Louloudi AP (1999) Chem Eng Technol 22:70–75CrossRefGoogle Scholar
  18. 18.
    EN 14103 Fat and oil derivatives-fatty acid methyl esters (FAME)—Determination of ester and linolenic acid methyl ester contents, CEN, 2003Google Scholar
  19. 19.
    Souza TPC (2015), Thesis, Chemical Engineering, Federal University of Pernambuco Recife-PEGoogle Scholar
  20. 20.
    Souza TPC, Stragevitch L, Knoechelmann A, Pacheco JGA, Silva JMF (2014) Fuel Process Technol 123:75–81CrossRefGoogle Scholar
  21. 21.
    Stamenkovic OS, Todorovic ZB, Lazic ML, Veljkovic VB, Skala DU (2008) Bioresour Technol 99:1131–1140CrossRefGoogle Scholar
  22. 22.
    EN 14214: Automotive fuels- fatty acid methyl esters (FAME), Requirements and Test Methods, European standard for biodiesel, 2010Google Scholar
  23. 23.
    National Agency of Petroleum, Natural Gas and Biofuel, ANP. Resolution Nº 14 of 11.5.2012—DOU 18.5.2012. Biodiesel Especification of Technical Note ANP nº 4 (2012)Google Scholar
  24. 24.
    Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, ChamCrossRefGoogle Scholar
  25. 25.
    Melo JCMT (2007), Thesis, Chemical Engineering, Federal University of Pernambuco Recife-PEGoogle Scholar
  26. 26.
    Ude CN, Okechukwu D (2019) React Kinet Mech Cat 127:1039–1058CrossRefGoogle Scholar
  27. 27.
    Rashid U, Anwar F, Knothe G (2009) Fuel Process Technol 90:1157–1163CrossRefGoogle Scholar
  28. 28.
    Kundu A, Mukherjee A, Halder G, Datta D (2016) Int J Res Eng Technol 1:31–44Google Scholar
  29. 29.
    Silva NL, Batistella CB, Filho RM, Maciel MRW (2009) Energy Fuels 23:5636–5642CrossRefGoogle Scholar
  30. 30.
    Fogler, HS (1999) Elements of chemical reaction engineering. Englewood cliffs, New JerseyGoogle Scholar
  31. 31.
    Sajjadi SA, Saba F, Ghadirzadeh A, Fonzo F (2017) Powder Technol 305:704–713CrossRefGoogle Scholar
  32. 32.
    Darnoko D, Cheryan M (2000) J Am Oil Chem Soc 77:1263–1267CrossRefGoogle Scholar
  33. 33.
    Vicente G, Martinez M, Aracil J, Esteban A (2005) Ind Eng Chem Res 44:5447–5454CrossRefGoogle Scholar
  34. 34.
    Stamenkovic O, Todorovic Z, Lazic M, Veljkovic V, Skala D (2008) Bioresour Technol 99:1131–1140CrossRefGoogle Scholar
  35. 35.
    Ana VM, Olivera SS, Zoran B, Todorovic MLL, Vlada BV (2009) Fuel 89:665–671Google Scholar
  36. 36.
    Freedman B, Buttefield RO, Pryde EH (1986) J Am Oil Chem Soc 1986(63):1375–1380CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Laboratory of Refining Process and Clean TechnologiesRecifeBrazil

Personalised recommendations