Comparative study of physico-chemical, acid–base and catalytic properties of vanadium based catalysts in the oxidehydrogenation of n-butane: effect of the oxide carrier

  • Samira Slyemi
  • Akila BaramaEmail author
  • Siham Barama
  • Hassiba Messaoudi
  • Sandra Casale
  • Juliette Blanchard


Vanadium based catalysts with the following compositions: 30%V2O5–70%MgO, 30%V2O5–70%SiO2 and 30%V2O5–40%MgO–30%SiO2 were prepared by the wet impregnation method using MgO and/or SiO2 as support. The structure, texture and morphology of the active phase strongly depend on the choice of support: for 30%V2O5–70%MgO, thin particles of Mg3V2O8 were identified with TEM (associated to EDS) together with MgO particles while large V2O5 particles beside silica particles bearing vanadium species on their surface (EDS) were observed in the case of the 30%V2O5–70%SiO2. For the 30%V2O5–40%MgO–30%SiO2, three crystalline phases were detected by XRD: Mg3V2O8, Mg2SiO4 and MgO. Mg3V2O8 and Mg2SiO4 were also identified with TEM-EDS with a silica-rich phase corresponding to the silica support bearing Mg and V species on its surface. The acid–base properties of the prepared materials were evaluated by the isopropanol decomposition test. The 30%V2O5–70%SiO2 displays only acidic properties (formation of propene) that can be assigned to the V2O5 phase and/or to the vanadium species dispersed on silica; the 30%V2O5–70%MgO presents mainly basic properties (formation of acetone) while the 3-components catalyst (30%V2O5–40%MgO–30%SiO2) displays both acid and basic properties. The catalytic activity was investigated in the oxidehydrogenation of n-butane. The selectivity to reaction products (butenes, COx, cracking, isobutane) is affected by the nature of surface vanadium and oxygen species, acid–base character and the operating conditions. The best selectivities to butenes (with low COx production) were obtained on the catalysts containing magnesium, probably a consequence of basic properties of MgO and highly dispersed magnesium-vanadium mixed phase. The decrease of contact time favors the dehydrogenation of n-butane to butenes especially for the V2O5–SiO2 catalyst.


Vanadium MgO SiO2 n-Butane Oxidehydrogenation Acid–base properties 



  1. 1.
    Chauvel A, Lefebvre G, Castex L (1985) Procédés De Pétrochimie: Caractéristiques Techniques Et Économiques, Tome 1. Technip, ParisGoogle Scholar
  2. 2.
    Shcherban ND, Diyuk EA, Sydorchuk VV (2019) Reac Kinet Mech Cat 126:975–985CrossRefGoogle Scholar
  3. 3.
    Naseri M, Zangeneh FT, Taeb A (2019) Reac Kinet Mech Cat 126:477–495CrossRefGoogle Scholar
  4. 4.
    Gao Y, Wang B, Yan B, Li J, Alam F, Xiao Z, Jiang T (2017) Reac Kinet Mech Cat 122:451–462CrossRefGoogle Scholar
  5. 5.
    Bulánek R, Kalužová A, Setnička M, Zukal A, Čičmanec P, Mayerová J (2012) Catal Today 179:149–158CrossRefGoogle Scholar
  6. 6.
    López Nieto JM, Concepción P, Dejoz A, Melo F, Knözinger H, Vázquez MI (2000) Catal Today 61:361–367CrossRefGoogle Scholar
  7. 7.
    Urlan F, Marcu IC, Sandulescu I (2008) Catal Commun 9:2403–2406CrossRefGoogle Scholar
  8. 8.
    Wachs IE, Jehng J-M, Deo G, Weckhuysen BM, Guliants VV, Benziger JB (1996) Catal Today 32:47–55CrossRefGoogle Scholar
  9. 9.
    Grzybowska-Świerkosz B (1997) Appl Catal A 157:409–420CrossRefGoogle Scholar
  10. 10.
    Slyemi S, Blanchard J, Barama S, Barama A, Messaoudi H, Casale S, Calers C, Ihdene Z (2017) C R Chim 20:1062–1071CrossRefGoogle Scholar
  11. 11.
    Kung HH (1989) Stud Surf Sci Catal 45:7–8Google Scholar
  12. 12.
    Bond GC, Flamerz Tahir S (1991) Appl Catal 71:1–31CrossRefGoogle Scholar
  13. 13.
    Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67–90CrossRefGoogle Scholar
  14. 14.
    Guliants VV (1999) Catal Today 51:255–268CrossRefGoogle Scholar
  15. 15.
    Rajadhyaksha RA, Knözinger H (1989) Appl Catal 51:81–92CrossRefGoogle Scholar
  16. 16.
    Haber J, Kozlowska A, Kozłowski R (1986) J Catal 102:52–63CrossRefGoogle Scholar
  17. 17.
    Mori K, Miyamoto A, Murakami Y (1985) J Phys Chem 89:4265–4269CrossRefGoogle Scholar
  18. 18.
    Siew Hew Sam D, Soenen V, Volta JC (1990) J Catal 123:417–435CrossRefGoogle Scholar
  19. 19.
    Soares Dias AP, Dimitrov LD, Oliveira MC-R, Zǎvoianu R, Fernandes A, Portela MF (2010) J Non-Cryst Solids 356:1488–1497CrossRefGoogle Scholar
  20. 20.
    Patel D, Andersen PJ, Kung HH (1990) J Catal 125:132–142CrossRefGoogle Scholar
  21. 21.
    Le Bars J, Vedrine JC, Auroux A, Trautmann S, Baerns M (1992) Appl Catal A 88:179–195CrossRefGoogle Scholar
  22. 22.
    Murgia V, Torres EMF, Gottifredi JC, Sham EL (2006) Appl Catal A 312:134–143CrossRefGoogle Scholar
  23. 23.
    Chaar MA, Patel D, Kung MC, Kung HH (1987) J Catal 105:483–498CrossRefGoogle Scholar
  24. 24.
    Corrna A, López Nieto JM, Parades N, Dejoz A, Vazquez I (1994) Stud Surf Sci Catal 82:113–123CrossRefGoogle Scholar
  25. 25.
    Corma A, Lopez Nieto JM, Parades N, Perez M, Shen Y, Cao H, Suib SL (1992) Stud Surf Sci Catal 72:213–220CrossRefGoogle Scholar
  26. 26.
    Gao XT, Ruiz P, Xin Q, Guo XX, Delmon B (1994) J Catal 148:56–67CrossRefGoogle Scholar
  27. 27.
    Michalakos PM, Kung MC, Jahan I, Kung H (1993) J Catal 140:226–242CrossRefGoogle Scholar
  28. 28.
    Corma A, Lopez Nieto JM, Paredes N (1993) J Catal 144:425–438CrossRefGoogle Scholar
  29. 29.
    Owens L, Kung HH (1993) J Catal 144:202–213CrossRefGoogle Scholar
  30. 30.
    Oyama ST, Somorjai GA (1990) J Phys Chem 94:5022–5028CrossRefGoogle Scholar
  31. 31.
    Oyama ST (1991) Res Chem Intermed 15:165–182CrossRefGoogle Scholar
  32. 32.
    Gao X, Xin Q, Guo X (1994) Appl Catal A 114:197–205CrossRefGoogle Scholar
  33. 33.
    Solsona B, Dejoz A, Vázquez MI, Márquez F, López Nieto JM (2001) Appl Catal A 208:99–110CrossRefGoogle Scholar
  34. 34.
    Slyemi S, Barama S, Barama A, Blanchard J, Messaoudi H, Casale S, Calers C (2018) Chem Eng Commun 205:1288–1298CrossRefGoogle Scholar
  35. 35.
    Holgado MJ, San Román S, Malet P, Rives V (2005) Mater Chem Phys 89:49–55CrossRefGoogle Scholar
  36. 36.
    Oganowski W, Hanuza J, Kȩpiński L, Miśta W, Ma̧czka M, Wyrostek A, Bukowski Z (1998) J Mol Catal A 136:91–104CrossRefGoogle Scholar
  37. 37.
    Said AA, Abd El-Wahab MMM (1995) Thermochim Acta 249:313–323CrossRefGoogle Scholar
  38. 38.
    Jin M, Cheng Z-M, Gao Y-L, Fang X-C (2009) Mater Lett 63:2055–2058CrossRefGoogle Scholar
  39. 39.
    Burrows A, Kiely CJ, Perregaard J, Højlund-Nielsen PE, Vorbeck G, Calvino JJ, López-Cartes C (1999) Catal Lett 57:121–128CrossRefGoogle Scholar
  40. 40.
    Busca G, Ricchiardi G, Siew Hew Sam D, Volta J-C (1994) J Chem Soc Faraday Trans 90:1161–1170CrossRefGoogle Scholar
  41. 41.
    Corma A, Lopez Nieto JM, Paredes N (1993) Appl Catal A 104:161–174CrossRefGoogle Scholar
  42. 42.
    Sugiyama S, Hirata Y, Nakagawa K, Sotowa K-I, Maehara K, Himeno Y, Ninomiya W (2008) J Catal 260:157–163CrossRefGoogle Scholar
  43. 43.
    Wachs IE, Jehng JM, Hardcastle FD (1989) Solid State Ion 32:904–910CrossRefGoogle Scholar
  44. 44.
    Lamine N, Benadda A, Djadoun A, Barama A, Blanchard J (2016) J Mol Catal A 425:157–165CrossRefGoogle Scholar
  45. 45.
    Turek W, Krowiak A (2012) Appl Catal A 417–418:102–110CrossRefGoogle Scholar
  46. 46.
    Busca G, Finocchio E, Ramis G, Ricchiardi G (1996) Catal Today 32:133–143CrossRefGoogle Scholar
  47. 47.
    Busca G, Ramis G, Lorenzelli V (1989) J Mol Catal 50:231–240CrossRefGoogle Scholar
  48. 48.
    Lemonidou AA, Tjatjopoulos GJ, Vasalos IA (1998) Catal Today 45:65–71CrossRefGoogle Scholar
  49. 49.
    López Nieto JM, Conceptión P, Dejoz A, Knözinger H, Melo F, Vázquez MI (2000) J Catal 189:147–157CrossRefGoogle Scholar
  50. 50.
    Telléz C, Abon M, Dalmon JA, Mirodatos C, Santamaría J (2000) J Catal 195:113–124CrossRefGoogle Scholar
  51. 51.
    Blasco T, López Nieto JM, Dejoz A, Vázquez MI (1995) J Catal 157:271–282CrossRefGoogle Scholar
  52. 52.
    Mishakov IV, Vedyagin AA, Bedilo AF, Zaikovskii VI, Klabunde KJ (2009) Catal Today 144:278–284CrossRefGoogle Scholar
  53. 53.
    Mishakov IV, Ekaterina VI, Bedilo AF, Vedyagin AA (2009) React Kinet Catal Lett 97:355–361CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Samira Slyemi
    • 1
  • Akila Barama
    • 1
    Email author
  • Siham Barama
    • 1
  • Hassiba Messaoudi
    • 1
  • Sandra Casale
    • 2
  • Juliette Blanchard
    • 2
  1. 1.Laboratoire Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de ChimieUniversité des Sciences et de la Technologie Houari Boumediene (USTHB)AlgerAlgérie
  2. 2.Laboratoire de Réactivité de SurfaceSorbonne Université-CNRS, UPMC Paris 06, UMR 7197ParisFrance

Personalised recommendations