Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 139–147 | Cite as

Immobilizaion of Preyssler type heteropoly acids on siliceous mesporous supports and their catalytic activities in the dehydration of ethanol

  • Mahuya BandyopadhyayEmail author
  • Divya Jadav
  • Nao Tsunoji
  • Tsuneji Sano
  • Masahiro Sadakane


Porous materials with different pore structure were synthesized and modified with Preyssler-type heteropolyacid material by post-synthetic wet-impregnation method. The functionalized materials were thoroughly characterized by different physic-chemical techniques. As reveled by characterization, the structures were well preserved after the modification. All the materials were catalytically active as proved by the catalytic results in dehydration of alcohol to ethylene. On comparison with Preyssler (without any support), which did not show activity at all, mesoporous matrices provided active support for hosting heteropolyacids which was found to be an excellent catalyst for this reaction.


Porous materials Polyoxometalates Ethanol Ethylene Preyssler modified mesoporous materials 



One of the authors (MS) would like to thank JSPS KAKENHI Grant Number JP18H02058 and JSPS Core-to-Core Program.

Supplementary material

11144_2019_1646_MOESM1_ESM.docx (305 kb)
Supplementary material 1 (DOCX 304 kb)


  1. 1.
    Hagrman D, Hagrman P, Zubieta J (1999) Angew Chem Int Ed 38:3165–3168CrossRefGoogle Scholar
  2. 2.
    Hagrman P, Hagrman D, Zubieta J (1999) Angew Chem Int Ed 38:2638–2684CrossRefGoogle Scholar
  3. 3.
    Loy D, Shea K (1995) Chem Rev 95:1431–1442CrossRefGoogle Scholar
  4. 4.
    Wight AP, Davis ME (2002) Chem Rev 102:3589–3614CrossRefGoogle Scholar
  5. 5.
    Wu Q, Chen W, Liu D, Liang C, Li Y, Wei L, Wang E (2011) Dalton Trans 40:56–61CrossRefGoogle Scholar
  6. 6.
    Kozhevnikov IV (1987) Russ Chem Rev 56:811CrossRefGoogle Scholar
  7. 7.
    Misono M, Nojiri N (1996) Appl Catal 64:1CrossRefGoogle Scholar
  8. 8.
    Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113–252Google Scholar
  9. 9.
    Corma A (1995) Chem Rev 95:559–614CrossRefGoogle Scholar
  10. 10.
    Misono M (1987) Catal Rev Sci Eng 29:269–321CrossRefGoogle Scholar
  11. 11.
    Misono M (1988) Catal Rev Sci Eng 30:339–340CrossRefGoogle Scholar
  12. 12.
    Rocchiccioli-Deltcheff C, Amirouch M, Herve G, Fournier M, Che M, Tatibouct JM (1990) J Catal 126:591–599CrossRefGoogle Scholar
  13. 13.
    Vazquez PG, Blanco MN, Caceres CV (1999) Catal Lett 60:205–215CrossRefGoogle Scholar
  14. 14.
    Sawami S, Shin-ichi N, Okuahar T, Misono M (1997) J Catal 166:263–271CrossRefGoogle Scholar
  15. 15.
    Schwegier MA, Vinke P, Vijk M, Van der M, Bekkum H (1992) Appl Catal A 80:41–57CrossRefGoogle Scholar
  16. 16.
    Dupont P, Vederine JC, Paumard E, Hecquet G, Lefebve F (1995) Appl Catal A 129:217–227CrossRefGoogle Scholar
  17. 17.
    Dupont P, Lefebve F (1996) J Mol Catal A 114:299–307CrossRefGoogle Scholar
  18. 18.
    Kozhevnikov IV, Sinnema A, Jansen RJJ, Pamin K, Bekkum HV (1994) Catal Lett 30:241–250CrossRefGoogle Scholar
  19. 19.
    Pizzio LR, Vazquez PG, Caceres CV, Blanco MN (2003) Appl Catal A 256:125–139CrossRefGoogle Scholar
  20. 20.
    Jin H, Wu Q, Zhang P, Pang W (2005) Solid State Sci 7:333–337CrossRefGoogle Scholar
  21. 21.
    Wu S, Wang J, Zhang W (2008) Catal Lett 125:308–314CrossRefGoogle Scholar
  22. 22.
    Patel A, Singh S (2014) Fuel 118:358–364CrossRefGoogle Scholar
  23. 23.
    Brahmkhatri V, Patel A (2012) Fuel 102:72–77CrossRefGoogle Scholar
  24. 24.
    Bhatt N, Patel A (2005) J Mol Catal A 238:223–228CrossRefGoogle Scholar
  25. 25.
    Sharma P, Patel A (2006) Bull Mater Sci 29:439–447CrossRefGoogle Scholar
  26. 26.
    Bandyopadhyay M, Tsunoji N, Sano T (2017) Catal Lett 147:1040–1050CrossRefGoogle Scholar
  27. 27.
    Gies H, Grabowski S, Bandyopadhyay M, Grünert W, Tkachenko OP, Klementiev KV, Birkner A (2003) Microporous Mesoporous Mater 60:31–42CrossRefGoogle Scholar
  28. 28.
    Lesaint C, Lebeau B, Marichal C, Patarin J (2005) Microporous Mesoporous Mater 83:76–84CrossRefGoogle Scholar
  29. 29.
    Wang X, Tseng YH, Chan JCC (2007) J Phys Chem C 111:2156–2164CrossRefGoogle Scholar
  30. 30.
    Alizadeh MH, Harmalker SP, Jeannin Y, Frère JM, Pope MT (1985) J Am Chem Soc 107:2662–2669CrossRefGoogle Scholar
  31. 31.
    Tarlani A, Abedini M, Nemati A, Khabaz M, Amini MM (2006) J Colloid Interface Sci 303:32–38CrossRefGoogle Scholar
  32. 32.
    Lapkin A, Bozkaya B, Mays T, Borello L, Edler K, Crittenden B (2003) Catal Today 81:611–621CrossRefGoogle Scholar
  33. 33.
    Tsunoji N, Takahashi K, Sadakane M, Sano T (2014) Bull Chem Soc Jpn 87:1379–1385CrossRefGoogle Scholar
  34. 34.
    Bandyopadhyay M, Tsunoji N, Bandyopadhyay R, Sano T (2018) Reac Kinet Mech Catal 126:167–179CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of Infrastructure, Technology, Research and Management, IITRAMAhmedabadIndia
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHigashi-HirosimaJapan

Personalised recommendations