Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 493–505 | Cite as

Preparation of mesoporous silica supported sulfonic acid and evaluation of the catalyst in esterification reactions

  • Yi WangEmail author
  • Jun You
  • Bo Liu
Article
  • 43 Downloads

Abstract

Sulfonic acid group was chemically bonded on either amorphous or highly ordered mesoporous silica surface through hydrothermal treatment with Na2SO3/NaHSO3 aqueous solution followed by acidification after the silica was grafted with surface propyl-chloride group. N2 adsorption–desorption was used for the characterization of the topology properties of the mesoporous silica–SO3H catalysts and the acid amount was studied by titration. Solid NMR and FTIR techniques were employed for detection of the surface groups and covalently bonded propyl–SO3H species was identified. The solid acid catalyst was evaluated in esterification reactions between various carboxylic acids and short-chain alcohols and the results demonstrated that the mesoporous silica–SO3H catalyst shows not only a high activity comparable to that of reported KIT-6-120–SO3H catalyst, but also an excellent recyclability (without deactivation after reused for eight times in lauric acid esterification with ethanol). The good performance and strong acidic character of the catalyst was correlated with the large pore size, well accessible acid sites as well as covalently grafted active structure on the catalyst.

Keywords

Mesoporous silica Sulfonic acid Catalyst Esterification Recyclable 

Notes

Acknowledgements

This work was supported by the Doctoral Scientific Research Foundation of Harbin University of Science and Technology (No. 8402-217045075).

References

  1. 1.
    Zhong Y, Deng Q, Zhang PX, Wang J, Wang R, Zeng Z, Deng SG (2019) Fuel 240:270–277CrossRefGoogle Scholar
  2. 2.
    Doustkhah E, Lin JJ, Rostamnia S, Len C, Luque R, Luo XL, Bando Y, Wu KCW, Kim J, Yamauchi Y, Ide Y (2019) Chem Eur J 25:1614–1635CrossRefGoogle Scholar
  3. 3.
    Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887–7916CrossRefGoogle Scholar
  4. 4.
    Lee DW, Lee KY (2014) Catal Surv Asia 18:55–74CrossRefGoogle Scholar
  5. 5.
    Bossaert WD, Vos DED, Rhijn WMV, Bullen J, Grobet PJ, Jacobs PA (1999) J Catal 182:156–164CrossRefGoogle Scholar
  6. 6.
    Díaz I, Márquez-Alvarez C, Mohino F, Pérez-Pariente J, Sastre E (2000) J Catal 193:295–302CrossRefGoogle Scholar
  7. 7.
    Díaz I, Mohino F, Pérez-Pariente J, Sastre E (2001) Appl Catal A Gen 205:19–30CrossRefGoogle Scholar
  8. 8.
    Pérez-Pariente J, Díaz I, Mohino F, Sastre E (2003) Appl Catal A Gen 254:173–188CrossRefGoogle Scholar
  9. 9.
    Mbaraka IK, Shanks BH (2005) J Catal 229:365–373CrossRefGoogle Scholar
  10. 10.
    Melero JA, Bautista LF, Morales G, Iglesias J, Briones D (2009) Energy Fuels 23:539–547CrossRefGoogle Scholar
  11. 11.
    Hermida L, Abdullah AZ, Mohamed AR (2011) Chem Eng J 174:668–676CrossRefGoogle Scholar
  12. 12.
    Ziarani GM, Lashgari N, Badiei A (2015) J Mol Catal A: Chem 397:166–191CrossRefGoogle Scholar
  13. 13.
    Karimi B, Mirzaei HM, Mobaraki A, Vali H (2015) Catal Sci Technol 5:3624–3631CrossRefGoogle Scholar
  14. 14.
    Maggi R, Shiju NR, Santacroce V, Maestri G, Bigi F, Rothenberg G (2016) Beilstein J Org Chem 12:2173–2180CrossRefGoogle Scholar
  15. 15.
    Furuta A, Fukuyama T, Ryu I (2017) Bull Chem Soc Jpn 90:607–612CrossRefGoogle Scholar
  16. 16.
    Aboelhassan MM, Peixoto AF, Freire C (2017) New J Chem 41:3595–3605CrossRefGoogle Scholar
  17. 17.
    Wu Q, Liu FJ, Yi XF, Zou YC, Jiang LL (2018) Green Chem 20:1020–1030CrossRefGoogle Scholar
  18. 18.
    Wang P, Zhao YP, Liu J (2018) Sci Bull 63:252–266CrossRefGoogle Scholar
  19. 19.
    Bandyopadhyay M, Tsunoji N, Bandyopadhyay R, Sano T (2019) Reac Kinet Mech Cat 126:167–179CrossRefGoogle Scholar
  20. 20.
    Dacquin JP, Lee AF, Pireza C, Wilson K (2012) Chem Commun 48:212–214CrossRefGoogle Scholar
  21. 21.
    Pirez C, Caderon JM, Dacquin JP, Lee AF, Wilson K (2012) ACS Catal 2:1607–1614CrossRefGoogle Scholar
  22. 22.
    Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Chem Mater 12:2448–2459CrossRefGoogle Scholar
  23. 23.
    Paiva EJMD, Graeser V, Wypych F, Corazza ML (2014) Fuel 117:125–132CrossRefGoogle Scholar
  24. 24.
    Wang Y, Liu B (2015) Catal Sci Technol 5:109–113CrossRefGoogle Scholar
  25. 25.
    Wight AP, Davis ME (2002) Chem Rev 102:3589–3614CrossRefGoogle Scholar
  26. 26.
    Gilbert E, Jones EP (1961) Ind Eng Chem 53:501–507CrossRefGoogle Scholar
  27. 27.
    Skubiszewska-Zięba J, Khalameida S, Sydorchuk V (2016) Coll Surf A Physicochem Eng Aspects 504:139–153CrossRefGoogle Scholar
  28. 28.
    Maciel GE, Sindorf DW (1980) J Am Chem Soc 102:7606–7607CrossRefGoogle Scholar
  29. 29.
    Geppi M, Borsacchi S, Mollica G, Veracini CA (2008) Appl Spectrosc Rev 44:1–89CrossRefGoogle Scholar
  30. 30.
    Díaz I, Márquez-Alvarez C, Mohino F, Pérez-Pariente J, Sastre E (2000) J Catal 193:283–294CrossRefGoogle Scholar
  31. 31.
    Solomons TWG, Fryhle CB (2004) Organic chemistry, 8th edn. Wiley, New YorkGoogle Scholar
  32. 32.
    Wilson K, Lee AF, Macquarrie DJ, Clark JH (2002) Appl Catal A Gen 228:127–133CrossRefGoogle Scholar
  33. 33.
    Pirez C, Lee AF, Manayil JC, Parlett CMA, Wilson K (2014) Green Chem 16:4506–4509CrossRefGoogle Scholar
  34. 34.
    Sarpal AS, Kapur GS, Mukherjee S, Jain SK (1997) Energy Fuels 11:662–667CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China

Personalised recommendations