Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 413–425 | Cite as

The dimensions of different copper species on Cu/SiO2 catalysts in the one-step condensation of isoprene via formaldehyde and isobutene

  • Rixiang Zhang
  • Hailin Zhu
  • Shan XuEmail author
  • Xu Luo
  • Guojun Zou
  • Li Liu


The one-step condensation of isoprene from vapor-phase formaldehyde and isobutene is an environmental-friendly synthesis technology in the chemical industry. This work reports the synthesis of isoprene in presence of Cu/SiO2 catalysts with different size of copper species using an impregnation method. The catalysts were characterized by UV–vis absorption spectra, Py-IR, H2-TPR, NH3-TPD, XRD, XPS techniques to better understand the catalytic performance. The increasing activity of the catalysts follows the order of the particle size of copper species from large to small. The smaller particle results more exposed Cu+ sites which might active the Carbonyl in formaldehyde. In addition, the medium strong Lewis acid sites on the dry catalysts might take the mainly effect in this Prins reaction.


Isoprene Particle size Cu+ sites Prins Formaldehyde 



  1. 1.
    Hongfei W (2012) Progress of production methods of isoprene. Spec Petrochem 29(05):77–82Google Scholar
  2. 2.
    Selvaraj M, Sinha PK (2010) Highly selective and clean synthesis of nopol over well-ordered mesoporous tin silicate catalysts. New J Chem 34(9):1921–1929. CrossRefGoogle Scholar
  3. 3.
    Ji M, Li XF, Wang JH, Zhu JM, Zhou LM (2011) Grafting SnCl4 catalyst as a novel solid acid for the synthesis of 3-methylbut-3-en-1-ol. Catal Today 173(1):28–31. CrossRefGoogle Scholar
  4. 4.
    Dumitriu E, Gongescu D, Hulea V (1993) Contribution to the study of isobutene condensation with formaldehyde catalyzed by zeolites. In: Guisnet M, Barbier J, Barrault J et al (eds) Heterogeneous catalysis and fine chemicals Iii, vol 78. Studies in surface science and catalysis. Elsevier Science Publ B V, Amsterdam, pp 669–676Google Scholar
  5. 5.
    Dumitriu E, Hulea V, Chelaru C, Hulea T (1994) Selective synthesis of isoprene by Prins condensation using molecular-sieves. Stud Surf Sci Catal 84:1997–2004CrossRefGoogle Scholar
  6. 6.
    Dumitriu E, On DT, Kaliaguine S (1997) Isoprene by Prins condensation over acidic molecular sieves. J Catal 170(1):150–160. CrossRefGoogle Scholar
  7. 7.
    Dumitriu E, Hulea V, Fechete I, Catrinescu C, Auroux A, Lacaze JF, Guimon C (1999) Prins condensation of isobutylene and formaldehyde over Fe-silicates of MFI structure. Appl Catal A 181(1):15–28. CrossRefGoogle Scholar
  8. 8.
    Sushkevich VL, Ordomsky VV, Ivanova II (2016) Isoprene synthesis from formaldehyde and isobutene over Keggin-type heteropolyacids supported on silica. Catal Sci Technol 6(16):6354–6364. CrossRefGoogle Scholar
  9. 9.
    Yu X, Zhu WC, Zhai SB, Bao Q, Cheng DD, Xia YY, Wang ZL, Zhang WX (2016) Prins condensation for the synthesis of isoprene from isobutylene and formaldehyde over sillica-supported H3SiW12O40 catalysts. React Kinet Mech Cat 117(2):761–771. CrossRefGoogle Scholar
  10. 10.
    Dang ZY, Gu JF, Yu LG, Zhang CW (1991) Vapor-phase synthesis of isoprene from formaldehyde and isobutylene over CuSO4-MOX/SiO2 catalysts. React Kinet Catal Lett 43(2):495–500. CrossRefGoogle Scholar
  11. 11.
    Sushkevich VL, Ordomsky VV, Ivanova II (2012) Synthesis of isoprene from formaldehyde and isobutene over phosphate catalysts. Appl Catal A 441:21–29. CrossRefGoogle Scholar
  12. 12.
    Qi YL, Cui L, Dai QQ, Li YQ, Bai CX (2017) Assembly line synthesis of isoprene from formaldehyde and isobutene over SiO2-supported MoP catalysts with active deposited carbon. RSC Adv 7(59):37392–37401. CrossRefGoogle Scholar
  13. 13.
    Ivanova I, Sushkevich VL, Kolyagin YG, Ordomsky VV (2013) Catalysis by coke deposits: synthesis of isoprene over solid catalysts. Angew Chem Int Ed Engl 52(49):12961–12964. CrossRefGoogle Scholar
  14. 14.
    Zhongyuan D, Shixin D (1987) Investigation of the surface characteristics and catalytic activity of SbxOy/SiO2 catalysts for gas-phase condensation between formaldehyde and isobutene into isoprene. J Mol Catal 3:146–152Google Scholar
  15. 15.
    Lidun A, Zhicheng J, Yuangeng Y (1987) Investigation of the active phase of AgxSbyOz/SiO2 catalyst for the condensation of isobutene and formaldehyde into isoprene. J Mol Catal 2:79–86Google Scholar
  16. 16.
    Nauert SL, Rosen AS, Kim H, Snurr RQ, Stair PC, Notestein JM (2018) Evidence for copper dinners in low-loaded CuOx/SiO2 catalysts for cyclohexane oxidative dehydrogenation. ACS Catal 8(10):9775–9789. CrossRefGoogle Scholar
  17. 17.
    Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J Phys Chem B 103(4):630–640. CrossRefGoogle Scholar
  18. 18.
    Schreier M, Regalbuto JR (2004) A fundamental study of Pt tetraammine impregnation of silica 1. The electrostatic nature of platinum adsorption. J Catal 225(1):190–202CrossRefGoogle Scholar
  19. 19.
    Chinchen GC, Hay CM, Vandervell HD, Waugh KC (1987) The measurement of copper surface-areas by reactive frontal chromatography. J Catal 103(1):79–86. CrossRefGoogle Scholar
  20. 20.
    Wong A, Lin Q, Griffin S, Nicholls A, Regalbuto JR (2017) Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 358(6369):1427–1430. CrossRefGoogle Scholar
  21. 21.
    Jiao L, Regalbuto JR (2008) The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: I Amorphous silica. J Catal 260(2):329–341. CrossRefGoogle Scholar
  22. 22.
    Mhamdi M, Khaddar-Zine S, Ghorbel A (2009) Influence of the cobalt salt precursors on the cobalt speciation and catalytic properties of H-ZSM-5 modified with cobalt by solid-state ion exchange reaction. Appl Catal 357(1):42–50. CrossRefGoogle Scholar
  23. 23.
    Song ZX, Zhang QL, Ning P, Liu X, Zhang JH, Wang YC, Xu LS, Huang ZZ (2016) Effect of copper precursors on the catalytic activity of Cu/ZSM-5 catalysts for selective catalytic reduction of NO by NH3. Res Chem Intermed 42(10):7429–7445. CrossRefGoogle Scholar
  24. 24.
    Nanba T, Masukawa S, Ogata A, Uchisawa J, Obuchi A (2005) Active sites of Cu-ZSM-5 for the decomposition of acrylonitrile. Appl Catal B 61(3–4):288–296. CrossRefGoogle Scholar
  25. 25.
    Yang Y (2014) The size dependence of the binding energy shift for Cu nanoparticles. Xiangtan University, MasterGoogle Scholar
  26. 26.
    LoJacono M, Fierro G, Dragone R, Feng XB, dItri J, Hall WK (1997) Zeolite chemistry of CuZSM-5 revisited. J Phys Chem B 101(11):1979–1984. CrossRefGoogle Scholar
  27. 27.
    Gong JL, Yue HR, Zhao YJ, Zhao S, Zhao L, Lv J, Wang SP, Ma XB (2012) Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J Am Chem Soc 134(34):13922–13925. CrossRefGoogle Scholar
  28. 28.
    Ding J, Popa T, Tang J, Gasem KAM, Fan M, Zhong Q (2017) Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol. Appl Catal B 209:530–542. CrossRefGoogle Scholar
  29. 29.
    Larsen SC, Aylor A, Bell AT, Reimer JA (1994) Electron-paramagnetic-resonance studies of copper ion-exchanged ZSM-5. J Phys Chem 98(44):11533–11540. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Lanzhou Institute of Chemical Physics, China Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations