Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 149–161 | Cite as

Optimization of O2/CH4 to oxide methane at 823 K by alumina-ceria supported Pt catalysts

  • I. Elizalde-MartínezEmail author
  • R. Ramírez-López
  • F. S. Mederos-Nieto
  • M. C. Monterrubio-Badillo
  • R. Vázquez Medina
  • M. E. Manríquez-Ramírez
Article
  • 56 Downloads

Abstract

Methane oxidation was carried out in presence of synthetized Pt/Al2O3–CeO2 catalysts with ceria contents between 1 and 37 mol%, at 823 K, 52,000 h−1 of GHSV, by varying the oxygen concentration from a deficient concentration respect to methane (1 mol:1 mol) up until a 100% excess over the stoichiometric (4 mol:1 mol). The catalysts were characterized by TGA, N2 sorption, XRD, TPR, UV–Vis, TPD-NH3, and ICP for elemental composition, while methane conversion was followed by gas chromatography. It was found that the optimum concentration of oxygen is the stoichiometric one, and, depending on the concentration of ceria in the catalyst, the operation window with defect and excess of oxygen is different. Particularly, at the highest concentration of ceria in the catalyst, the conversion of methane is greater than using other catalytic materials, and this behavior was attributed to the higher concentration of surface ceria, greater oxygen mobility as well as the synergistic ceria-alumina-platinum effect toward hydrocarbon oxidation.

Keywords

Methane oxidation Oxygen/methane ratio Alumina/ceria oxides 

Notes

Acknowledgements

Authors thank financial support from IPN-México, through grants 20196037, 20195674, 20196552, and 20195583.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11144_2019_1641_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)

References

  1. 1.
    Lavoie T, Shepson P, Gore C, Stirm B, Kaeser R, Wulle B, Lyon D, Rudek J (2017) Assessing the methane emissions from natural gas-fired power plants and oil refineries. Environ Sci Technol 51(6):3373–3381Google Scholar
  2. 2.
    Current natural gas vehicle statistics. http://www.iangv.org/current-ngv-stats/. Accessed 11 Nov 2018
  3. 3.
    Choudhary TV, Choudhary VR, Banerjee S (2002) Catalysts for combustion of methane and lower alkanes. Elsevier B.V, AmsterdamGoogle Scholar
  4. 4.
    Howarth RW, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Change 106(4):679–690Google Scholar
  5. 5.
    Cho HM, He B (2007) Spark ignition natural gas engines—A review. Energy Convers Manag 48(2):608–618Google Scholar
  6. 6.
    Hu N, Liu S, Gao Y, Xu J, Zhang Z, Zhang X, Lee X (2018) Large methane emissions from natural gas vehicles in Chinese cities. Atmos Environ 187:374–380Google Scholar
  7. 7.
    Oh SH, Mitchell PJ, Siewert RM (1991) Methane oxidation over alumina-supported noble metal catalysts with and without cerium additives. J Catal 132(2):287–301Google Scholar
  8. 8.
    Ramírez R, Balderas L, Elizalde I, Viveros T (2009) Complete oxidation of methane over Pt/CeO2–Al2O3. Chem Eng Commun 196(10):1189–1197Google Scholar
  9. 9.
    Amin A, Abedi A, Hayes R, Votsmeier M, Epling W (2014) Methane oxidation hysteresis over Pt/Al2O3. Appl Catal A 478:91–97Google Scholar
  10. 10.
    Trovarelli A, Fornasiero P (2013) Catalysis by ceria and related materials. Imperial College Press, SingaporeGoogle Scholar
  11. 11.
    Fouladvand S, Skoglundh M, Carlsson P (2016) Unsteady-state operation of supported platinum catalysts for high conversion of methane. Chem Eng J 292:321–325Google Scholar
  12. 12.
    Carlsson P, Skoglundh M (2011) Low-temperature oxidation of carbon monoxide and methane over alumina and ceria supported platinum catalysts. Appl Catal B 101(3–4):669–675Google Scholar
  13. 13.
    van Giezen JC, van den Berg FR, Kleinen JL, van Dillen AJ, Geus JW (1999) The effect of water on the activity of supported palladium catalysts in the catalytic combustion of methane. Catal Today 47(1):287–293Google Scholar
  14. 14.
    Raj A (2016) Methane emission control: A review of mobile and stationary source emissions abatement technologies for natural gas engines. Johns Matthey Technol Rev 60(4):228–235Google Scholar
  15. 15.
    Niemelä M, Kola H, Perämäki P, Piispanen J, Poikolainen J (2005) Comparison of microwave-assisted digestion methods and selection of internal standards for the determination of Rh, Pd and Pt in dust samples by ICP-MS. Microchim Acta 150(3):211–217Google Scholar
  16. 16.
    Shen Y, Zhu S, Qiu T, Shen S (2009) A novel catalyst of CeO2/Al2O3 for selective catalytic reduction of NO by NH3. Catal Commun 11(1):20–23Google Scholar
  17. 17.
    Aptel G, Petrakis D, Jones D, Rozeniere J, Pomonis P (1998) Mesoporous Al–Fe–P–O solids prepared in non-aqueous medium: structure and surface acid catalytic behavior. Stud Surf Sci Catal 118:931–939Google Scholar
  18. 18.
    Osorio-Vargas P, Flores-González NA, Navarro RM, Fierro JLG, Campos CH, Reyes P (2016) Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction. Catal Today 259:27–38Google Scholar
  19. 19.
    Foo S.Y. (2012) Oxidative dry reforming of methane over alumina-supported Co–Ni catalyst systems. PhD Thesis, University of New South Wales, Sydney: AustraliaGoogle Scholar
  20. 20.
    Mierczynski P, Mierczynska A, Ciesielski R, Mosinska M, Nowosielska M, Czylkowska A, Maniukiewic W, Szynkowska M, Vasilev K (2018) High active and selective Ni/CeO2 –Al2O3 and Pd–Ni/CeO2 –Al2O3 catalysts for oxy-steam reforming of methanol. Catal 8(9):380Google Scholar
  21. 21.
    Kastanas GN, Tsigdinos GA, Schwank J (1988) Selective oxidation of methane over Vycor glass, quartz glass and various silica, magnesia and alumina surfaces. Appl Catal 44:33–51Google Scholar
  22. 22.
    van Beurden P. (2004). On the catalytic aspects on steam-methane reforming. ECN I 04 003 1-27. https://pdfs.semanticscholar.org/acc9/82524c316ebee7e538dc508be0792ceafae0.pdf
  23. 23.
    Nottbohm CT, Hess C (2012) Investigation of ceria by combined Raman, UV–Vis and X-ray photoelectron spectroscopy. Catal Commun 22:39–42Google Scholar
  24. 24.
    Damyanova S, Bueno JMC (2003) Effect of CeO2 loading on the surface and catalytic behaviors of CeO2–Al2O3–supported Pt catalysts. Appl Catal A 253(1):135–150Google Scholar
  25. 25.
    Gélin P, Primet M (2002) Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal B 39(1):1–37Google Scholar
  26. 26.
    Rao GR, Sahu HR (2001) XRD and UV–Vis diffuse reflectance analysis of CeO2 –ZrO solid solutions synthesized by combustion method. Proc Indian Acad Sci Chem Sci 113:651–658Google Scholar
  27. 27.
    Bourja L, Bakiz B, Benlhachemi A, Ezahri M, Villain S, Gavarri JR (2010) Synthesis and characterization of nanosized Ce1-xbixo2-δ solid solutions for catalytic applications. J Taibah Univ Sci 4(1):1–8Google Scholar
  28. 28.
    Pérez H. (2008) Efecto de la adición de la ceria en las propiedades fisicoquímicas y redox de catalizadores de platino soportado en alúmina- ceria para la oxidación total de compuestos volátiles. PhD Thesis, México: UAM- IztapalapaGoogle Scholar
  29. 29.
    Liotta LF, Deganello G (2003) Thermal stability, structural properties and catalytic activity of Pd catalyst support on Al2O3–CeO2–BaO mixed oxides prepared by sol–gel method. J Mol Catal A 204–205:763–770Google Scholar
  30. 30.
    Padilla JM, del Ángel G, Bertin V, Cortés-López AJ, Fierro JLG, Poisot M (2013) Combustión de tolueno en catalizadores de Pd y Pt soportados en Al2O3 y Al2O3 –Ce. Rev Mex Ing Quim 12(1):73–83Google Scholar
  31. 31.
    Berger-Karin C, Wohlrab S, Rodemerck U, Kondratenko E (2012) The tremendous effect of trace amounts of Rh on redox and catalytic properties of CeO2–TiO2 and Al2O3 in CH4 partial oxidation. Catal Commun 18:121–125Google Scholar
  32. 32.
    Miranda J, Elizalde I, Lartundo L, Hernández I, Jaramillo D, Ramírez R (2015) The effect of Titania precursors and ceria loadings on textural and chemical properties of TiO2–CeO2 and Pt-Rh/TiO2–CeO2. J Sol Gel Sci Technol 74(3):707–717Google Scholar
  33. 33.
    Li M, Malamis SA, Epling W, Harold MP (2019) Steady state and lean-rich cycling study of a three-way NOX storage catalyst: modeling. Appl Catal B 242:469–484Google Scholar
  34. 34.
    Profeti LPR, Ticianelli EA, Assaf EM (2009) Production of hydrogen via steam reforming of biofuels on Ni/CeO–Al2O3 catalysts promoted by noble metals. Int. J Hydrog Energy 34(11):5049Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia (CMP + L-IPN)Ciudad de MéxicoMexico
  2. 2.Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias ExtractivasCiudad de MéxicoMexico
  3. 3.Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-QuerétaroQuerétaroMexico

Personalised recommendations