Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 379–394 | Cite as

Sustainable approach to the synthesis of 1,4-disubstitued triazoles using reusable Cu(II) complex supported on hydroxyapatite-encapsulated α-Fe2O3 as organic–inorganic hybrid nanocatalyst

  • Bahareh Babaei
  • Manouchehr MamaghaniEmail author
  • Masoud Mokhtary
Article
  • 22 Downloads

Abstract

A novel Cu(II) complex supported on hydroxyapatite-encapsulated α-Fe2O3 as organic–inorganic hybrid nanocatalyst (α-Fe2O3@Hap@Cu) was synthesized and used in the preparation of 1,2,3-triazole derivatives under green reaction conditions. In this protocol, water was used as solvent under aerobic conditions at room temperature, with low catalyst loading, while ensuring the recovery and reusability of the catalyst. The catalyst affords excellent selectivity in formation of the desired products in short reaction time (10–35 min) and excellent yields (85–98%). The paramagnetic nature of the catalyst led to its easy and convenient separation by an external magnet and reused for 11 consecutive runs without significant loss in activity. The structure of the catalyst was established by FT-IR, XRD, SEM, TEM, EDX, VSM and TGA analyses.

Keywords

Nanocatalyst 1,2,3-Triazole Green Chemistry Hydroxyapatite.α-Fe2O3 Cu(II) Complex 

Notes

Acknowledgement

The authors are grateful to the Research Council of Islamic Azad University, Rasht Branch for partial financial support of this research work.

Supplementary material

11144_2019_1636_MOESM1_ESM.pdf (6.4 mb)
Supplementary material 1 (PDF 6551 kb)

References

  1. 1.
    Tsai Y, Chanda K, Chu Y, Chiu C, Huang MH (2014) Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles. RSC Adv 6:8704Google Scholar
  2. 2.
    Nasrollahzadeh M, Bayat Y, Habibi D, Moshaee S (2009) FeCl3–SiO2 as a reusable heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles via [2 + 3] cycloaddition of nitriles and sodium azide. Tetrahedron Lett 50(31):4435–4438CrossRefGoogle Scholar
  3. 3.
    Spiteri C, Moses JE (2010) Copper-catalyzed azide-alkyne cycloaddition: regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Angew Chem Int Ed 49:31–33CrossRefGoogle Scholar
  4. 4.
    Alonso F, Moglie Y, Radivoy G, Yus M (2010) Unsupported copper nanoparticles in the 1, 3-dipolar cycloaddition of terminal alkynes and azide. Eur J Org Chem 10:1875–1884CrossRefGoogle Scholar
  5. 5.
    Keivanloo A, Bakherad M, Khosrojerdi M, Amin AH (2018) PVC-supported ethylenediamine-copper(II) complex: a heterogeneous, efficient, and eco-friendly catalyst for multi-component synthesis of 1,2,3-triazoles by reaction of propargyl bromide, aromatic azides, and amines in water. Res Chem Intermed 44:2571–2583CrossRefGoogle Scholar
  6. 6.
    Li P, Liu Y, Wang L, Xiao J, Tao M (2018) Copper (II)-Schiff base complex-functionalized polyacrylonitrile fiber as a green efficient heterogeneous catalyst for one-pot multicomponent syntheses of 1,2,3-triazoles and propargylamines. Adv Synth Catal 360:1673–1684CrossRefGoogle Scholar
  7. 7.
    Roya S, Chatterjeec T, Pramanik M, Singha Roy A, Bhaumik A, Sk Bhaumik Islam (2014) Cu(II)-anchored functionalized mesoporous SBA-15: an efficient andrecyclable catalyst for the one-pot Click reaction in water. J Mol Catal 386:78–85CrossRefGoogle Scholar
  8. 8.
    Ge C, Sang X, Yao W, Zhang L, Wang D (2018) Unsymmetrical indazolyl-pyridinyl-triazole ligand-promoted highly active iridium complexes supported on hydrotalcite and its catalytic application in water. Green Chem 20:1805–1812CrossRefGoogle Scholar
  9. 9.
    Xu Z, Yu X, Sang X, Wang D (2018) BINAP-copper supported by hydrotalcite as an efficient catalyst for the borrowing hydrogen reaction and dehydrogenation cyclization under water or solvent-free conditions. Green Chem 20:2571–2577CrossRefGoogle Scholar
  10. 10.
    Ghosh S, Saha S, Sengupta D, Chattopadhyay S, De G, Basu B (2017) Stabilized Cu2O nanoparticles on macroporous poly–styrene resins [Cu2O@ARF]: improved and reusable heterogeneous catalyst for on–water synthesis of triazoles via click reaction. Ind Eng Chem Res 56(41):11726–11733CrossRefGoogle Scholar
  11. 11.
    Chetia M, Ali AA, Bordoloi A, Sarma D (2017) Facile route for the regioselective synthesis of 1,4-disubstituted 1,2,3-triazole using copper nanoparticles supported on nanocellulose as recyclable heterogeneous catalyst. J Chem Sci 129:1211–1217CrossRefGoogle Scholar
  12. 12.
    Taheri Kal-Kashvandi A, Heravi MM, Ahmadi Sh, Hosseinnejad T (2018) Copper nanoparticles in polyvinyl alcohol–acrylic acid matrix: an efficient heterogeneous catalyst for the regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles via click reaction. J Inorg Organomet Polym 30:1457–1467CrossRefGoogle Scholar
  13. 13.
    Heravi MM, Mahdizade SJ, Esfandiari M, Hashemi E (2018) Experimental and computational studies on catalytic activity of novel adenine-based nano Cu(I) polymers in regioselective synthesis of 1,4-disubstituted 1,2,3-Triazoles. J Inorg Organomet Polym 28:767–776CrossRefGoogle Scholar
  14. 14.
    Liang S, Xu K, Zeng C-C, Tian H-Y, Sun B-G (2018) Recent advances in the electrochemical α–C–H bonds functionalization of carbonyl compounds. Adv Synth Catal 360:4266–4292CrossRefGoogle Scholar
  15. 15.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064CrossRefGoogle Scholar
  16. 16.
    Baig RBN, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Chem Commun 49:752–770CrossRefGoogle Scholar
  17. 17.
    Dolatkhah Z, Javanshir Sh, Bazgir A, Bolfazl A, Khani M (2018) Magnetic isinglass a nano-bio support for copper immobilization: Cu–IG@Fe3O4 a heterogeneous catalyst for triazoles synthesis. Chem Select 3(19):5486–5493Google Scholar
  18. 18.
    Lu A, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  19. 19.
    Bonyasi R, Gholinejad M, Saadati F, Najera C (2018) Copper ferrite nanoparticles modified Starch as a highly recoverable catalyst for room temperature click chemistry: multicomponent synthesis of 1,2,3-triazoles in water. New J Chem 42:3078CrossRefGoogle Scholar
  20. 20.
    Fihri A, Len Ch, Varma RS, Solhy A (2017) Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord Chem Rev 347:48–76CrossRefGoogle Scholar
  21. 21.
    Mohesenimehr M, Mamaghani M, Shirini F, Sheykhani M, Abbas pour S, Shafeei sabet L (2015) One-pot synthesis of novel pyrimido[4,5-b]quinolines and pyrido[2,3-d:6,5d]dipyrimidines using encapsulated γ-Fe2O3 nanoparticles. J Chem Sci 127(11):1895–1904CrossRefGoogle Scholar
  22. 22.
    Kheirkhah L, Mamaghani M, Yahyazadeh A, Mahmoodi NO (2017) HAp-encapsulated γ-Fe2O3 supported dual acidic heterogeneous catalyst for highly efficient one-pot synthesis of benzoxanthenones and 3-pyranylindoles. Appl Organomet Chem 32:2–11Google Scholar
  23. 23.
    Ma’mani L, Sheykhan M, Heydari A (2011) Nano silver embedded on hydroxyapatite-encapsulated γ-Fe2O3: superparamagnetic catalyst for chemoselective oxidation of primary amines to N-monoalkylated hydroxylamines. Appl Catal A 395:34CrossRefGoogle Scholar
  24. 24.
    Ye D, Huang R, Zhu H, Zou L-H, Wang D (2019) Thienylbenzotriazole promoted highly active gold nanoparticles supported on N-doped graphene as efficient catalysts in water and a mechanism exploration. Org Chem Front 6:62–69CrossRefGoogle Scholar
  25. 25.
    Ye D, Pan L, Zhu H, Jin L, Miao H, Wang D (2019) Encapsulation of pentazole gold nanoparticles into modified polycyanostyrene and polynitrostyrene microspheres as efficient catalysts for cinnoline synthesis and hydration reaction. Mater Chem Front 3:216–223CrossRefGoogle Scholar
  26. 26.
    Pashaei M, Mehdipour E (2017) Magnetic hydroxyapatite-immobilized 1,4-diazabicyclo [2.2.2] octane as a highly efficient and eco-friendly nanocatalyst for the promotion of nucleophilic substitution reactions of benzyl halides under green conditions. Reac Kinet Mech Cat 122(2):1159–1174CrossRefGoogle Scholar
  27. 27.
    Costa MS, Boechat N, Rangel EA, Da Silva Fde C, De Souza AM, Rodrigues CR, Castro HC, Junior IN, Lourenco MC, Wardell SM, Ferreira VF (2006) Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives. Bioorg Med Chem 14:8644–8653CrossRefGoogle Scholar
  28. 28.
    Liang L, Astruc D (2011) The Copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coordin Chem Rev 255:2933–2945CrossRefGoogle Scholar
  29. 29.
    Fan WQ, Katritzky AR, Rees CW, Scriven EFV (1996) Comprehensive heterocyclic chemistry, 2nd ed edn. Elsevier Science, OxfordGoogle Scholar
  30. 30.
    Brockunier LL, Parmee ER, Ok HO, Candelore MR, Cascieri MA, Colwell LF, Deng L, Feeney WP, Forrest MJ, Hom GJ, MacIntyre DE, Tota L, Wyvratt MJ, Fisher MH, Weber E (2000) Human β3-adrenergic receptor agonists containing 1,2,3-triazole-substituted benzenesulfonamides. Bioorg Med Chem Lett 10:2111–2114CrossRefGoogle Scholar
  31. 31.
    Wang D, Zhao K, Xu C, Miao H, Ding Y (2014) Synthesis, structures of benzoxazolyl iridium(III) complexes and applications on C–C and C–N bond formation reactions under solvent-free conditions: catalytic activity enhanced by noncoordinating anion without silver effect. ACS Catal 4(11):3910–3918CrossRefGoogle Scholar
  32. 32.
    Yang Y, Qin A, Zhao K, Wang D, Shi X (2016) Design and synthesis of alanine triazole ligands and application in promotion of hydration, allene synthesis and borrowing hydrogen reactions. Adv Synth Catal 358:1433–1439CrossRefGoogle Scholar
  33. 33.
    Xu Z, Wang D-S, Yu X, Yang Y, Wang D (2017) Tunable triazole-phosphine-copper catalysts for the synthesis of 2-Aryl-1H-benzo[d]imidazoles from benzyl alcohols and diamines by acceptorless dehydrogenation and borrowing hydrogen reactions. Adv Synth Catal 359:3332–3340CrossRefGoogle Scholar
  34. 34.
    Huang R, Yang Y, Wang D-S, Zhang L, Wang D (2018) Where does Au coordinate to a N-(2-Pyridiyl)benzotriazole: goldcatalyzed chemoselective dehydrogenation and borrowing hydrogen reaction. Org Chem Front 5:203–209CrossRefGoogle Scholar
  35. 35.
    Wu Q, Pan L, Du G, Zhang C, Wang D (2018) Preparation of pyridyltriazole ruthenium complexes as effective catalysts for the selective alkylation and one-pot C–H hydroxylation of 2-oxindole with alcohols and mechanism exploration. Org Chem Front 5:2668–2675CrossRefGoogle Scholar
  36. 36.
    Agalave SG, Maujan SR, Pore VS (2011) Click chemistry: 1, 2, 3-triazoles as pharmacophores. Chem Asian J 6:2696–2718CrossRefGoogle Scholar
  37. 37.
    Hein CD, Liu XM, Wang D (2008) Click chemistry, a powerful tool for pharmaceutical sciences. Pharm Res 25:2216–2229CrossRefGoogle Scholar
  38. 38.
    Barral K, Moorhouse AD, Moses JE (2007) Efficient conversion of aromatic amines into azides: a one-pot synthesis of triazole linkages. Org Lett 9:1809–1811CrossRefGoogle Scholar
  39. 39.
    Appukkuttan P, Dehaen W, Fokin VV, Van der Eycken E (2004) Microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a Copper(I)-catalyzed three-component reaction. Org Lett 6:4223–4225CrossRefGoogle Scholar
  40. 40.
    Dururgkar KA, Gonnade RG, Ramana CV (2009) A Cu(I)-promoted one-pot ‘SNAr–click reaction’ of fluoronitrobenzenes. Tetrahedron 65:3974–3979CrossRefGoogle Scholar
  41. 41.
    Cao L, Liu C, Tang X, Yin X, Zhang B (2014) Highly selective synthesis of 1-polyfluoroaryl-1,2,3-triazoles via a one-pot three-component reaction. Tetrahedron Lett 55:5033–5037CrossRefGoogle Scholar
  42. 42.
    Nasir Baig RB, Varma RS (2013) Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem 15:398–417CrossRefGoogle Scholar
  43. 43.
    Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM (2011) Magnetically recoverable nanocatalysts. Chem Rev 11:3036–3075CrossRefGoogle Scholar
  44. 44.
    Liu N, Chao F, Liu M-G, Huang N-Y, Zou K, Wang L (2019) Odorless isocyanide chemistry #one-pot synthesis of heterocycles via Passerini and the post-modification tandem reaction based on in situ capture of isocyanides. J Org Chem 84:2366–2371CrossRefGoogle Scholar
  45. 45.
    Wang L, Xie Y-B, Huang N-Y, Yan J-Y, Hu W-M, Liu M-G, Ding M-W (2016) Catalytic aza-Wittig reaction of acid anhydride for the synthesis of 4H-benzo[d][1,3]oxazin-4-ones and 4-benzylidene-2-aryloxazol-5(4H)-ones. ACS Catal 6:4010–4016CrossRefGoogle Scholar
  46. 46.
    Wang L, Xie Y-B, Huang N-Y, Zhang N-N, Li D-J, Hu Y-L, Liu M-G, Li D-S (2017) Disulfide-directed C–H hydroxylation for synthesis of sulfonyl diphenyl sulfides and 2(Phenylthio) phenols with oxygen as oxidant. Adv Synth Catal 359:779–785CrossRefGoogle Scholar
  47. 47.
    Tajbakhsh M, Farhang M, Baghbanian SM, Hosseinzadeh R, Tajbakhsh M (2015) Nano magnetite supported metal ions as robust, efficient and recyclable catalysts for green synthesis of propargylamines and 1, 4-disubstituted 1,2, 3-triazoles in water. New J Chem 39:1827–1839CrossRefGoogle Scholar
  48. 48.
    Reddy VH, Reddy YR, Sridhar B, Reddy BS (2016) Green catalytic process for click synthesis promoted by Copper oxide nanocomposite supported on graphene oxide. Adv Synth Catal 358:1088–1092CrossRefGoogle Scholar
  49. 49.
    Alonso F, Moglie Y, Radivoy G, Yus M (2011) Click chemistry from organic halides, diazonium salts and anilines in water catalyzed by copper nanoparticles on activated carbon. Org Biomol Chem 9:6385–6395CrossRefGoogle Scholar
  50. 50.
    Mamaghani M, Shirini F, Sheykhan M, Mohsenimehr M (2015) Synthesis of a copper(II) complex covalently anchoring a (2-iminomethyl)phenol moiety supported on HAp-encapsulated-α-Fe2O3 as an inorganic–organic hybrid magnetic nanocatalyst for the synthesis of primary and secondary amides. RSC Adv 5:44524–44529CrossRefGoogle Scholar
  51. 51.
    Mirfarjood SA, Mamaghani M, Sheykhan M (2017) Copper-incorporated fluorapatite encapsulated iron oxide nanocatalyst for synthesis of benzimidazoles. ChemistrySelect 2:359–366CrossRefGoogle Scholar
  52. 52.
    Sheykhan M, Ma’mani L, Ebrahimi A, Heydari A (2011) Sulfamic acid heterogenized on hydroxyapatite-encapsulated γ-Fe2O3nanoparticles as a magnetic green interphase catalyst. J Mol Catal A 335:253–261CrossRefGoogle Scholar
  53. 53.
    Ma’mani L, Sheykhan M, Heydari A, Faraji M, Yamini Y (2010) Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Brønsted acid for N-formylation of amines. Appl Catal A 377:64–69CrossRefGoogle Scholar
  54. 54.
    Jafari AA, Mahmoudi H, Firouzabadi H (2015) Copper acetate/2-aminobenzenthiol complex supported on magnetite/silica nanoparticles as a highly active and recyclable catalyst for 1,2,3-triazoles synthesis. RSC Adv 5:107474–107481CrossRefGoogle Scholar
  55. 55.
    Berg R, Straub J, Schreiner E, Mader S, Rominger F, Strauba BF (2012) Highly active dinuclear Copper catalysts for homogeneous azide–alkyne cycloadditions. Adv Synth Catal 354:3445CrossRefGoogle Scholar
  56. 56.
    Chen Y, Zhuo ZJ, Cui DM, Zhang C (2014) Copper catalyzed synthesis of 1-aryl-1,2,3-triazoles from aryl Iodides, alkynes, and sodium azide. J Organomet Chem 749:215–218CrossRefGoogle Scholar
  57. 57.
    Jiang Y, Li X, Li X, Sun Y, Zhao Y, Jia S, Guo N, Xu G, Zhang W (2017) Copper(II) acetylacetonate: an efficient catalyst for huisgen- click reaction for synthesis of 1,2,3-triazoles in water. Chin J Chem 35:1239–1245CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Bahareh Babaei
    • 1
  • Manouchehr Mamaghani
    • 2
    Email author
  • Masoud Mokhtary
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesIslamic Azad UniversityRasht BranchIran
  2. 2.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran

Personalised recommendations