Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 217–234 | Cite as

The impact of different alumina supports on cobalt-catalyzed Fischer–Tropsch synthesis and investigation of kinetic model for the catalyst with optimum performance

  • Sophia Mohammadnasabomran
  • Ahmad TavasoliEmail author
  • Yahya Zamani
Article

Abstract

This study investigated three different types of catalysts: (i) Co/Al2O3–FSM16, (ii) Co/synthesized mesoporous Al2O3, and (iii) Co/conventional mesoporous Al2O3 prepared by incipient wetness impregnation of the cobalt precursor and used in Fischer–Tropsch synthesis (FTS). The obtained catalysts were characterized by ICP-MS, XRD, H2-TPR, BET, TEM and H2 chemisorption techniques. The results of characterizations clearly showed the changes of morphology of the supports. The catalyst were tested in a fixed bed reactor under realistic conditions. The results showed that, the highest pore volume and the smallest cobalt particles size related to synthesized mesoporous Al2O3 and Co/synthesized mesoporous Al2O3. However, Co/Al2O3–FSM16 indicated the narrowest particles size range (2–26 nm). The catalysts activity and selectivity tests showed that the proposed Co/Al2O3–FSM16 increased the FTS rate from 0.13 to 0.18 g HC/gcat./h. In addition, C5+ selectivity increased up to 9%. On the other hand, ALSM decreased the CO conversion by 7%. Kinetic data were measured for Fischer–Tropsch synthesis (FTS) on Co/Al2O3–FSM16 at various partial pressures of CO and H2 and at three different temperatures (210, 220 and 230 °C) and pressures (12, 16 and 20 bar). The results of modeling showed that Percentage of data that has absolute relative residual (ARR) less than 25 (P25%) is 67%.

Keywords

Fischer–Tropsch synthesis Al2O3–FSM16 Synthesized mesoporous Al2O3 Activity Selectivity Kinetic modeling 

Notes

Supplementary material

11144_2019_1634_MOESM1_ESM.docx (379 kb)
Supplementary material 1 (DOCX 379 kb)

References

  1. 1.
    Peña D, Cognigni A, Neumayer T, van Beek W, Jones DS, Quijada M, Rønning M (2018) Identification of carbon species on iron-based catalysts during Fischer-Tropsch synthesis. Appl Catal A 554:10–23CrossRefGoogle Scholar
  2. 2.
    Kang SH, Woo KJ, Jun KW, Kang Y (2009) Hydrogenation of CO on supported cobalt γ-Al2O3 catalyst in fixed bed and slurry bubble column reactors. Korean J Chem Eng 26:1533–1538CrossRefGoogle Scholar
  3. 3.
    Xing C, Ai P, Zhang P, Gao X, Yang R, Yamane N, Sun J, Reubroycharoen P, Tsubaki N (2016) Fischer-Tropsch synthesis on impregnated cobalt-based catalysts: New insights into the effect of impregnation solutions and pH value. J Energy Chem 25:994–1000CrossRefGoogle Scholar
  4. 4.
    Wang Y, Hou B, Li D, Chen J, Sun Y (2012) Effect of cobalt introduction order over Co/SiO2 sol–gel catalysts for Fischer-Tropsch synthesis. Reac Kinet Mech Cat 106:217–224CrossRefGoogle Scholar
  5. 5.
    Chen J, Xiang H, Gao H, Sun Y (2001) Study on deactivation of Co/ZrO2/SiO2 catalyst for Fischer-Tropsch synthesis. React Kinet Catal Lett 73:169–177CrossRefGoogle Scholar
  6. 6.
    Zhang Q, Deng W, Wang Y (2013) Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure. J Energy Chem 22:27–52CrossRefGoogle Scholar
  7. 7.
    Iglesia E, Soled SL, Fiato RA (1992) Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal 137:212–224CrossRefGoogle Scholar
  8. 8.
    Panpranot J, Kaewgun S, Praserthdam P (2005) Metal-supoort interaction in mesoporous silica supported cobalt Fischer-tropsch catalysts. React Kinet Catal Lett 85:299–304CrossRefGoogle Scholar
  9. 9.
    Maw Ding Y, Yang J, Liu X, Lin L (2005) Study of activated carbon supported iron catalysts for Fischer-tropsch synthesis. React Kinet Catal Lett 84:11–19CrossRefGoogle Scholar
  10. 10.
    Čejka J (2003) Organized mesoporous alumina: synthesis, structure and potential in catalysis. Appl Catal A 254:327–338CrossRefGoogle Scholar
  11. 11.
    Srisawad N, Chaitree W, Mekasuwandumrong O, Shotipruk A, Jongsomjit B, Panpranot J (2012) CO2 hydrogenation over Co/Al2O3 catalysts prepared via a solid-state reaction of fine gibbsite and cobalt precursors. React Kinet Mech Cat 107:179–188CrossRefGoogle Scholar
  12. 12.
    Borg Ø, Eri S, Blekkan EA, Storsæter S, Wigum H, Rytter E, Holmen A (2007) Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: effect of support variables. J Catal 248:89–100CrossRefGoogle Scholar
  13. 13.
    Wu W, Zhu M, Zhang D (2018) The role of solvent preparation in soft template assisted synthesis of mesoporous alumina. Microporous Mesoporous Mater 260:9–16CrossRefGoogle Scholar
  14. 14.
    Sousa-Aguiar EF, Noronha FB, Faro A (2011) The main catalytic challenges in GTL (gas-to-liquids) processes. Catal Sci Technol 1:698–713CrossRefGoogle Scholar
  15. 15.
    Munnik P, De Jongh PE, De Jong KP (2015) Recent developments in the synthesis of supported catalysts. Chem Rev 115:6687–6718CrossRefGoogle Scholar
  16. 16.
    Wei J, Ren Y, Luo W, Sun Z, Cheng X, Li Y, Deng Y, Elzatahry AA, Al-Dahyan D, Zhao D (2017) Ordered mesoporous alumina with ultra-large pores as an efficient absorbent for selective bioenrichment. Chem Mater 29:2211–2217CrossRefGoogle Scholar
  17. 17.
    Wei M, Okabe K, Arakawa H, Teraoka Y (2002) Fischer-Tropsch synthesis over cobalt catalysts supported on mesoporous alumino-silicate. New J Chem 26:20–23CrossRefGoogle Scholar
  18. 18.
    Rostamikia T, Parsafar N, Peyrovi MH (2019) Pd and Pt supported on mesoporous silica, silica–alumina and alumina as catalysts for benzene elimination in reformate gasoline. React Kinet Mech Cat 127(1):345–356CrossRefGoogle Scholar
  19. 19.
    Guo C, Wu Y, Zhan J (2013) Study on bimodal mesoporous Co/SiO2 catalysts for the Fischer-Tropsch synthesis. Reac Kinet Mech Cat 109:497–508CrossRefGoogle Scholar
  20. 20.
    Da Costa P, Potvin C, Manoli JM, Breysse M, Djéga-Mariadassou G (2001) Novel phosphorus-doped alumina-supported molybdenum and tungsten carbides: synthesis, characterization and hydrogenation properties. Catal Lett 72:91–97CrossRefGoogle Scholar
  21. 21.
    Alphonse P, Faure B (2013) Synthesis of highly porous alumina-based materials. Microporous Mesoporous Mater 181:23–28CrossRefGoogle Scholar
  22. 22.
    Araki H, Fukuoka A, Sakamoto Y, Inagaki S, Sugimoto N, Fukushima Y, Ichikawa M (2003) Template synthesis and characterization of gold nano-wires and particles in mesoporous channels of FSM-16. J Mol Catal A 199:95–102CrossRefGoogle Scholar
  23. 23.
    González-Pea V, Díaz I, Márquez-Alvarez C, Sastre E, Pérez-Pariente J (2001) Thermally stable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines. Microporous Mesoporous Mater 44:203–210CrossRefGoogle Scholar
  24. 24.
    Prieto G, De Mello MIS, Concepción P, Murciano R, Pergher SBC, Martĺnez A (2015) Cobalt-catalyzed Fischer-Tropsch synthesis: chemical nature of the oxide support as a performance descriptor. ACS Catal 5:3323–3335CrossRefGoogle Scholar
  25. 25.
    Martínez A, Prieto G, Rollán J (2009) Nanofibrous γ-Al2O3 as support for Co-based Fischer-Tropsch catalysts: pondering the relevance of diffusional and dispersion effects on catalytic performance. J Catal 263:292–305CrossRefGoogle Scholar
  26. 26.
    Omran SM, Tavasoli A, Zamani Y (2015) Promotion effects of ceria and calcium over CNT-supported cobalt catalyst in Fischer Tropsch synthesis. Pet Coal 57:509–515Google Scholar
  27. 27.
    Mousavi S, Zamaniyan A, Irani M, Rashidzadeh M (2016) Statistical investigation of macro kinetics for iron and cobalt based Fischer-Tropsch synthesis: mechanistic and kinetic implications. J Nat Gas Sci Eng 34:1333–1346CrossRefGoogle Scholar
  28. 28.
    Malek Abbaslou RM, Tavasoli A, Dalai AK (2009) Effect of pre-treatment on physico-chemical properties and stability of carbon nanotubes supported iron Fischer-Tropsch catalysts. Appl Catal A 355:33–41CrossRefGoogle Scholar
  29. 29.
    Trépanier M, Tavasoli A, Dalai AK, Abatzoglou N (2009) Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis. Appl Catal A 353:193–202CrossRefGoogle Scholar
  30. 30.
    Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263–281CrossRefGoogle Scholar
  31. 31.
    Chen W, Fan Z, Pan X, Bao X (2008) Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. JACS 130:9414–9419CrossRefGoogle Scholar
  32. 32.
    Keyvanloo K, Lanham SJ, Hecker WC (2016) Kinetics of Fischer-Tropsch synthesis on supported cobalt: Effect of temperature on CO and H2 partial pressure dependencies. Catal Today 270:9–18CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Sophia Mohammadnasabomran
    • 1
  • Ahmad Tavasoli
    • 1
    Email author
  • Yahya Zamani
    • 2
  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  2. 2.Research Institute of Petroleum Industry (RIPI)National Iranian Oil CompanyTehranIran

Personalised recommendations