Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 41–52 | Cite as

Hydrogen-transfer hydrodehalogenation of aromatic halides with a silica-supported palladium catalyst in alkaline 2-propanol: comparison between brominated and chlorinated anisoles

  • Yuji UkisuEmail author


Hydrogen-transfer hydrodehalogenation of brominated anisoles, chlorinated anisoles, and bromochloroanisoles was carried out at 30–40 °C in a solution of NaOH in 2-propanol/methanol (99:1 V/V) in the presence of a Pd/SiO2 catalyst. The dehalogenation reactions proceeded stepwise to afford anisole, and 2-propanol served as a hydrogen source. In single-substrate reactions, 2,4,6-tribromoanisole (TBA) was dehalogenated more slowly than 2,4,6-trichloroanisole, whereas in a competitive reaction, 2,4,6-TBA was preferentially dehalogenated. The analysis of lower-halogenated intermediates revealed that the ortho halogen was less reactive than the para halogen, and the isomer selectivity of the dehalogenation reaction strongly depended on the halogen atom. The conversion of bromochloroanisoles (3-bromo-4-chloroanisole, 3-bromo-5-chloroanisole, and 2-bromo-4-chloroanisole) to anisole occurred exclusively via the corresponding chloroanisoles. The difference in dehalogenation behavior between the brominated and chlorinated anisoles is discussed on the basis of carbon–halogen bond dissociation energies, steric effects, and substrate adsorption ability.


Hydrodehalogenation Aromatic bromide Aromatic chloride Pd catalyst 2-Propanol 



The author gratefully acknowledges financial support from the National Institute of Advanced Industrial Science and Technology, Japan.


  1. 1.
    UNEP, Stockholm convention, The 12 initial POPs. Accessed Feb 2019
  2. 2.
    UNEP, Stockholm convention, The new POPs, Accessed Feb 2019
  3. 3.
    Hitchman ML, Spackman RA, Ross NC, Agra C (1995) Disposal methods for chlorinated aromatic wastes. Chem Soc Rev 24:423–430CrossRefGoogle Scholar
  4. 4.
    Alonso F, Beletskaya IP, Yus M (2002) Metal-mediated reductive hydrodehalogenation of organic halides. Chem Rev 102:4009–4091CrossRefGoogle Scholar
  5. 5.
    Urbano FJ, Marinas JM (2001) Hydrogenolysis of organohalogen compounds over palladium supported catalysts. J Mol Catal A 173:329–345CrossRefGoogle Scholar
  6. 6.
    Keane MA (2011) Supported transition metal catalysts for hydrodechlorination reactions. ChemCatChem 3:800–821CrossRefGoogle Scholar
  7. 7.
    Johnstone RAW, Wilby AH, Entwistle ID (1985) Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem Rev 85:129–170CrossRefGoogle Scholar
  8. 8.
    Ukisu Y, Miyadera T (1997) Hydrogen-transfer hydrodehalogenation of aromatic halides with alcohols in the presence of noble metal catalysts. J Mol Catal A 125:135–142CrossRefGoogle Scholar
  9. 9.
    Ukisu Y, Miyadera T (2003) Hydrogen-transfer hydrodechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans catalyzed by supported palladium catalysts. Appl Catal B 40:141–149CrossRefGoogle Scholar
  10. 10.
    Ukisu Y (2008) Highly enhanced hydrogen-transfer hydrodechlorination and hydrogenation reactions in alkaline 2-propanol/methanol over supported palladium catalysts. Appl Catal A 349:229–232CrossRefGoogle Scholar
  11. 11.
    Ukisu Y, Iimura S, Uchida R (1996) Catalytic dechlorination of polychlorinated biphenyls with carbon-supported noble metal catalysts under mild conditions. Chemosphere 33:1523–1530CrossRefGoogle Scholar
  12. 12.
    Ukisu Y, Miyadera T (2004) Dechlorination of dioxins with supported palladium catalysts in 2-propanol solution. Appl Catal A 271:165–170CrossRefGoogle Scholar
  13. 13.
    Ukisu Y (2008) Complete dechlorination of DDT and its metabolites in an alcohol mixture using NaOH and Pd/C catalyst. J Hazard Mater 152:287–292CrossRefGoogle Scholar
  14. 14.
    Ukisu Y, Miyadera T (2005) Dechlorination of hexachlorocyclohexanes with alkaline 2-propanol and a palladium Catalyst. J Hazard Mater 122:1–6CrossRefGoogle Scholar
  15. 15.
    Ukisu Y (2015) Complete catalytic debromination of polybrominated diphenyl ethers over a silica-supported palladium nanoparticle catalyst. Environ Chem Lett 13:211–216CrossRefGoogle Scholar
  16. 16.
    Ukisu Y (2017) Complete catalytic debromination of hexabromocyclododecane using a silica-supported palladium catalyst in alkaline 2-propanol. Chemosphere 179:179–184CrossRefGoogle Scholar
  17. 17.
    Buser HR, Zanier C, Tanner H (1982) Identification of 2,4,6-trichloroanisole as a potent compound causing cork taint in wine. J Agric Food Chem 30:359–362CrossRefGoogle Scholar
  18. 18.
    Chatonnet P, Bonnet S, Boutou S, Labadie MD (2004) Identification and responsibility of 2,4,6-tribromoanisole in musty, corked orders in wine. J Agric Food Chem 52:1255–1262CrossRefGoogle Scholar
  19. 19.
    Jönsson S, Hagberg J, van Bavel B (2008) Determination of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole in wine using microextraction in packed syringe and gas chromatography-mass spectrometry. J Agric Food Chem 56:4962–4967CrossRefGoogle Scholar
  20. 20.
    Gunschera J, Fuhrmann F, Salthammer T, Schulze A, Uhde E (2004) Formation and emission of chloroanisoles as indoor pollutants. Environ Sci Pollut Res 11:147–151CrossRefGoogle Scholar
  21. 21.
    Ukisu Y (2015) Preparation of silica-supported Pd nanoparticle catalysts by an alcohol reduction method and evaluation of their catalytic properties in the dechlorination of an aromatic chloride. React Kinet Mech Cat 114:385–394CrossRefGoogle Scholar
  22. 22.
    Shin EJ, Keane MA (1998) Gas phase catalytic hydrodechlorination of chlorophenols using a supported nickel catalyst. Appl Catal B 18:241–250CrossRefGoogle Scholar
  23. 23.
    Keane MA, Pina G, Tavoularis G (2004) The catalytic hydrodechlorination of mono-, di- and trichlorobenzenes over supported nickel. Appl Catal B 48:275–286CrossRefGoogle Scholar
  24. 24.
    Murena F, Schioppa E (2000) Kinetic analysis of catalytic hydrodechlorination process of polychlorinated biphenyls (PCBs). Appl Catal B 27:257–267CrossRefGoogle Scholar
  25. 25.
    Zhuang Y, Ahn S, Seyfferth AL, Masue-Slowey Y, Fendorf S, Luthy RG (2011) Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environ Sci Technol 45:4896–4903CrossRefGoogle Scholar
  26. 26.
    Gómez-Quero S, Díaz E, Cárdenas-Lizana F, Keane MA (2010) Solvent effects in the catalytic hydrotreatment of haloaromatics over Pd/Al2O3 in water + organic mixtures. Chem Eng Sci 65:3786–3797CrossRefGoogle Scholar
  27. 27.
    Murthy KV, Patterson PM, Keane MA (2005) C-X bond reactivity in the catalytic hydrodehalogenation of haloarenes over unsupported and silica supported Ni. J Mol Catal A 225:149–160CrossRefGoogle Scholar
  28. 28.
    Keane MA (2004) Hydrodehalogenation of haloarenes over silica supported Pd and Ni: a consideration of catalytic activity/selectivity and haloarene reactivity. Appl Catal A 271:109–118CrossRefGoogle Scholar
  29. 29.
    Tavoularis G, Keane MA (1999) Gas phase catalytic dehydrochlorination and hydrodechlorination of aliphatic and aromatic systems. J Mol Catal A 142:187–199CrossRefGoogle Scholar
  30. 30.
    Park C, Menini C, Valverde JL, Keane MA (2002) Carbon-chlorine and carbon-bromine bond cleavage in the catalytic hydrodehalogenation of halogenated aromatics. J Catal 211:451–463CrossRefGoogle Scholar
  31. 31.
    Oxley JD, Mdleleni MM, Suslick KS (2004) Hydrodehalogenation with sonochemically prepared Mo2C and W2C. Catal Today 88:139–151CrossRefGoogle Scholar
  32. 32.
    Chen ECM, Albyn K, Dussack L, Wentworth WE (1989) Determination of bond dissociation energies from dissociative thermal electron attachment. J Phys Chem 93:6827–6832CrossRefGoogle Scholar
  33. 33.
    Watanabe T, Wang ZY, Takahashi O, Morihashi K, Kikuchi O (2004) Calculation of systematic set of bond dissociation enthalpies of polyhalogenated benzenes. J Mol Struct Theochem 682:63–72CrossRefGoogle Scholar
  34. 34.
    Aramendía MA, Boráu V, García IM, Jiménez C, Marinas A, Marinas JM, Urbano FJ (2003) Liquid-phase hydrodehalogenation of substituted chlorobenzenes over palladium supported catalysts. Appl Catal B 43:71–79CrossRefGoogle Scholar
  35. 35.
    Mackenzie K, Frenzel H, Kopinke FD (2006) Hydrodehalogenation of halogenated hydrocarbons in water with Pd catalysts: reaction rates and surface competition. Appl Catal B 63:161–167CrossRefGoogle Scholar
  36. 36.
    Marques CA, Selva M, Tundo P (1993) Facile Hydrodehalogenation with hydrogen and Pd/C catalyst under multiphase conditions. J Org Chem 58:5256–5260CrossRefGoogle Scholar
  37. 37.
    Aramendía MA, Boráu V, García IM, Jiménez C, Marinas JM, Marinas A, Urbano FJ (2000) Hydrodehalogenation of aryl halides by hydrogen gas and hydrogen transfer in the presence of palladium catalysts. Stud Surf Sci Catal 130:2003–2008CrossRefGoogle Scholar
  38. 38.
    Štěpnička P, Semler M, Demel J, Zukal A, Čejka J (2011) Reductive dehalogenation of aryl halides over palladium catalysts deposited on SBA-15 type molecular sieve modified with amine donor groups. J Mol Catal A 341:97–102CrossRefGoogle Scholar
  39. 39.
    Huang Y, Liu S, Lin Z, Li W, Li X, Cao R (2012) Facile synthesis of palladium nanoparticles encapsulated in amine-functionalized mesoporous metal-organic frameworks and catalytic for dehalogenation of aryl chlorides. J Catal 292:111–117CrossRefGoogle Scholar
  40. 40.
    Kara BY, Yazici M, Kilbas B, Goksu H (2016) A practical and highly efficient reductive dehalogenation of aryl halides using heterogeneous Pd/Al(OH) nanoparticles and sodium borohydride. Tetrahedron 72:5898–5902CrossRefGoogle Scholar
  41. 41.
    Wiener H, Blum J, Sasson Y (1991) Transfer hydrogenolysis of aryl halides and hydrogen acceptors by formate salts in the presence of Pd/C catalyst. J Org Chem 56:6145–6148CrossRefGoogle Scholar
  42. 42.
    Moon J, Lee S (2009) Palladium catalyzed-dehalogenation of aryl chlorides and bromides using phosphite ligands. J Organomet Chem 694:473–477CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations