Advertisement

Photocatalytic discoloration of an azo-dye using LaMn0.5Ti0.5O3 double perovskite under visible light irradiation and enhancement of photocatalytic activity by using graphene

  • Parvaneh Nakhostin PanahiEmail author
  • Mohammad Hossein Rasoulifard
  • Fatemeh Hekmati
Article
  • 8 Downloads

Abstract

In this study, rare-earth perovskite-type oxides LaTiO3±δ, LaMnO3 and LaMn0.5Ti0.5O3 were prepared by the sol–gel method and tested for the photocatalytic decomposition of an azo dye, basic red 46, under visible light. The experimental results showed that the photocatalytic activity of LaMn0.5Ti0.5O3 was much higher than that of LaMnO3 and LaTiO3±δ. Then, the discoloration efficiency of basic red 46 was studied over LaMn0.5Ti0.5O3 prepared by several methods. The structure, morphology and light absorption of prepared samples were characterized by XRD, SEM and UV–vis (DRS mode) spectroscopy. The best photocatalytic performance exhibited by the LaMn0.5Ti0.5O3 prepared using the Pechini sol–gel method and its excellent activity results from narrower band-gap energy, smaller particles size and porosity structure which is capable of supporting the enhanced loading of organic contaminants on surface. In the following, graphene/LaMn0.5Ti0.5O3 nanocomposite photocatalysts were synthesized for the first time. The photocatalytic efficiency of the graphene/LaMn0.5Ti0.5O3 nanocomposites was higher than that of pristine LaMn0.5Ti0.5O3 and graphene(50%wt)/LaMn0.5Ti0.5O3 had the greatest photocatalytic activity (degradation 90% after 5 h). The excellent photocatalytic activity can be attributed to the high separation efficiency of photoinduced electron–hole pairs resulting from the excellent conductivity of in graphene/LaMn0.5Ti0.5O3.

Keywords

Double perovskite Photocatalyst Azo dye Preparation Graphene 

Notes

Acknowledgements

The authors would like to acknowledge the financial support from University of Zanjan and Iranian Nanotechnology Initiative.

Supplementary material

11144_2019_1629_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1346 kb)

References

  1. 1.
    Khanna A, Shetty VK (2014) Sol Energy 99:67–76CrossRefGoogle Scholar
  2. 2.
    Gnanamani A, Bhaskar M, Ganga R, Sekaran G, Sadulla S (2004) Chemosphere 56(9):833–841CrossRefGoogle Scholar
  3. 3.
    Pare B, Jonnalagadda S, Tomar H, Singh P, Bhagwat V (2008) Desalination 232(1):80–90CrossRefGoogle Scholar
  4. 4.
    Daneshvar N, Salari D, Khataee A (2003) J Photochem Photobiol A 157(1):111–116CrossRefGoogle Scholar
  5. 5.
    Ku Y, Wang L-C, Ma C-M, Chou Y-C (2011) Water Air Soil Pollut 215(1–4):97–103CrossRefGoogle Scholar
  6. 6.
    Liu D-R, Jiang Y-S, Gao G-M (2011) Chemosphere 83(11):1546–1552CrossRefGoogle Scholar
  7. 7.
    Rasoulifard MH, Marandi R, Majidzadeh H, Bagheri I (2011) Environ Eng Sci 28(3):229–235CrossRefGoogle Scholar
  8. 8.
    Rasoulifard M, Dorraji MS, Taherkhani S (2016) J Taiwan Inst Chem E 58:324–332CrossRefGoogle Scholar
  9. 9.
    Shifu C, Lei C, Shen G, Gengyu C (2005) Chem Phys Lett 413(4):404–409CrossRefGoogle Scholar
  10. 10.
    Fakhouri H, Pulpytel J, Smith W, Zolfaghari A, Mortaheb HR, Meshkini F, Jafari R, Sutter E, Arefi-Khonsari F (2014) Appl Catal B 144:12–21CrossRefGoogle Scholar
  11. 11.
    Bae SW, Ji SM, Hong SJ, Jang JW, Lee JS (2009) Int J Hydrog Energy 34(8):3243–3249CrossRefGoogle Scholar
  12. 12.
    Fu S, Niu H, Tao Z, Song J, Mao C, Zhang S, Chen C, Wang D (2013) J Alloys Compd 576:5–12CrossRefGoogle Scholar
  13. 13.
    Jie H, Jie M, Jiahua M, Huang H (2014) J Rare Earths 32(12):1126–1134CrossRefGoogle Scholar
  14. 14.
    Pena M, Fierro J (2001) Chem Rev 101(7):1981–2018CrossRefGoogle Scholar
  15. 15.
    Li D, Zheng J, Zou Z (2006) J Phys Chem Solids 67(4):801–806CrossRefGoogle Scholar
  16. 16.
    Abazari R, Sanati S, Saghatforoush LA (2014) Mater Sci Semicond Process 25:301–306CrossRefGoogle Scholar
  17. 17.
    Torres-Martínez LM, Cruz-López A, Juárez-Ramírez I, Meza-de la Rosa ME (2009) J Hazard Mater 165(1):774–779CrossRefGoogle Scholar
  18. 18.
    Hu J, Ma J, Wang L, Huang H (2014) J Alloys Compd 583:539–545CrossRefGoogle Scholar
  19. 19.
    Liang D, Cui C, Hu H, Wang Y, Xu S, Ying B, Li P, Lu B, Shen H (2014) J Alloys Compd 582:236–240CrossRefGoogle Scholar
  20. 20.
    Yoo D-H, Cuong TV, Pham VH, Chung JS, Khoa NT, Kim EJ, Hahn SH (2011) Curr Appl Phys 11(3):805–808CrossRefGoogle Scholar
  21. 21.
    Wu C, Zhang Y, Li S, Zheng H, Wang H, Liu J, Li K, Yan H (2011) Chem Eng J 178:468–474CrossRefGoogle Scholar
  22. 22.
    Zhang D, Pu X, Ding G, Shao X, Gao Y, Liu J, Gao M, Li Y (2013) J Alloys Compd 572:199–204CrossRefGoogle Scholar
  23. 23.
    Low J, Yu J, Li Q, Cheng B (2014) Phys Chem Chem Phys 16(3):1111–1120CrossRefGoogle Scholar
  24. 24.
    Hu R, Li C, Wang X, Sun Y, Jia H, Su H, Zhang Y (2012) Catal Commun 29:35–39CrossRefGoogle Scholar
  25. 25.
    Hosseini SA, Salari D, Niaei A, Oskoui SA (2013) J Ind Eng Chem 19(6):1903–1909CrossRefGoogle Scholar
  26. 26.
    Nakhostin Panahi P, Salari D, Tseng H-H, Niaei A, Mousavi SM (2017) Environ Technol 38(15):1852–1861CrossRefGoogle Scholar
  27. 27.
    Panahi PN, Niaei A, Salari D, Mousavi SM, Delahay G (2015) J Environ Sci 35:135–143CrossRefGoogle Scholar
  28. 28.
    Al-Areqi NA, Al-Alas A, Al-Kamali AS, Ghaleb KA, Al-Mureish K (2014) J Mol Catal A 381:1–8CrossRefGoogle Scholar
  29. 29.
    Susanti YD, Afifah N, Saleh R (2017) Multifunctional photocatalytic degradation of methylene blue using LaMnO3/Fe3O4 nanocomposite on different types of graphene. J Phys 1:012021Google Scholar
  30. 30.
    Feraru S, Borhan A, Samoila P, Mita C, Cucu-Man S, Iordan A, Palamaru M (2015) J Photochem Photobiol A 307:1–8CrossRefGoogle Scholar
  31. 31.
    Hu J, Ma J, Wang L, Huang H, Ma L (2014) Powder Technol 254:556–562CrossRefGoogle Scholar
  32. 32.
    Wei Z-X, Xiao C-M, Zeng W-W, Liu J-P (2013) J Mol Catal A 370:35–43CrossRefGoogle Scholar
  33. 33.
    Abbasi A, Hamadanian M, Salavati-Niasari M, Mortazavi-Derazkola S (2017) J Colloid Interface Sci 500:276–284CrossRefGoogle Scholar
  34. 34.
    Wei Y, Zhang X, Xu J, Wang J, Huang Y, Fan L, Wu J (2014) Appl Catal B 147:920–928CrossRefGoogle Scholar
  35. 35.
    Wang L, Pang Q, Song Q, Pan X, Jia L (2015) Fuel 140:267–274CrossRefGoogle Scholar
  36. 36.
    Wei Z-X, Ye S-B, Wang X-M (2016) Ceram Int 42(7):9196–9203CrossRefGoogle Scholar
  37. 37.
    Yoshino M, Kakihana M, Cho WS, Kato H, Kudo A (2002) Chem Mater 14(8):3369–3376CrossRefGoogle Scholar
  38. 38.
    Yoshioka K, Petrykin V, Kakihana M, Kato H, Kudo A (2005) J Catal 232(1):102–107CrossRefGoogle Scholar
  39. 39.
    Yang S, Gong Y, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan PM (2013) Adv Mater 25(17):2452–2456CrossRefGoogle Scholar
  40. 40.
    Reddy J, Kurra S, Guje R, Palla S, Veldurthi NK, Ravi G, Vithal M (2015) Ceram Int 41(2):2869–2875CrossRefGoogle Scholar
  41. 41.
    Wang X, Zhi L, Müllen K (2008) Nano Lett 8(1):323–327CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Parvaneh Nakhostin Panahi
    • 1
    Email author
  • Mohammad Hossein Rasoulifard
    • 1
  • Fatemeh Hekmati
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of ZanjanZanjanIran

Personalised recommendations