Advertisement

Kinetic evaluation of the hydroformylation of the post-metathesis product 7-tetradecene using a heterobimetallic rhodium-ferrocenyl Schiff base derived precatalyst

  • Nicholas C. C. BreckwoldtEmail author
  • Gregory S. Smith
  • Percy Van der Gryp
  • Neill J. Goosen
Article
  • 28 Downloads

Abstract

Reaction engineering kinetics for the hydroformylation of the post-metathesis product 7-tetradecene using a heterobimetallic rhodium-ferrocenyl Schiff base derived precatalyst was investigated with variation of reaction temperature (85–105 °C), precatalyst loading (0.25–0.52 mM), carbon monoxide partial pressures (20–40 bar) and hydrogen partial pressures (20–40 bar). The experimental product-time distributions for the parallel hydroformylation and isomerization reaction system are well described by four interdependent pseudo first-order differential mole balance equations. The effects of temperature in the Arrhenius equation, precatalyst concentration, carbon monoxide and hydrogen partial pressures have been incorporated into a phenomenological mechanism-based rate equation. The rate of hydroformylation is first order in alkene, carbon monoxide and hydrogen, with fractional dependence in precatalyst concentration. The activation energy for the hydroformylation reaction was calculated to be 62 kJ mol−1, which is comparable to that determined for the commercialized phosphorus-modified catalyst systems.

Keywords

Hydroformylation Kinetics Heterobimetallic Rhodium Ferrocene Internal alkene 

Abbreviations

C14

7-Tetradecene

2HN

2-Hexylnonanal

ISOALK

Isoalkenes

ISOALD

Isoaldehydes

Rh

Rhodium

SSE

Sum of square errors

List of symbols

C

Concentration (mol L−1)

EA

Activation energy (kJ mol−1)

K

Observed reaction rate constant (h−1)

k0

Pre-exponential factor (Lx mol−x bar2 h−1/Lx mol−x h−1)

K

Equilibrium constant (bar−1)

P

Pressure (bar)

R

Universal gas constant (J mol−1 K−1)

T

Temperature (°C/K)

Notes

Acknowledgements

The support of the DST-NRF Centre of Excellence (CoE) in Catalysis towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the CoE. The authors also wish to thank the University of Stellenbosch and University of Cape Town for additional financial support towards this research and Shepherd Siangwata for skilled guidance and assistance in preparing the precatalyst used for the study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cornils B, Hermann W (2002) Applied homogeneous catalysis with organometallic compounds: a comprehensive handbook in three volumes. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Van Leeuwen P, Claver C (eds) (2002) Rhodium catalyzed hydroformylation. Springer, New YorkGoogle Scholar
  3. 3.
    Franke R, Selent D, Borner A (2012) Applied hydroformylation. Chem Rev 112:5675–5732CrossRefGoogle Scholar
  4. 4.
    Park J, Hong S (2012) Cooperative bimetallic catalysis in asymmetric transformations. Chem Soc Rev 41:6931–6943CrossRefGoogle Scholar
  5. 5.
    Van der Vlugt J (2012) Cooperative catalysis with first-row late transition metals. Eur J Inorg Chem 3:363–375CrossRefGoogle Scholar
  6. 6.
    Timerbulatova M, Gatus M, Vuong K, Bhadbhade M, Algarra A, Macgregor S, Messerle B (2013) Bimetallic complexes for enhancing catalyst efficiency: probing the relationship between activity and intermetallic distance. Organometallics 32:5071–5081CrossRefGoogle Scholar
  7. 7.
    Feringa B, Van den Beuken E (1998) Bimetallic catalysis by late transition metal complexes. Tetrahedron 54:12985–13011CrossRefGoogle Scholar
  8. 8.
    Bratko I, Gómez M (2013) Polymetallic complexes linked to a single-frame ligand: cooperative effects in catalysis. Dalton Trans 42:10664–10681CrossRefGoogle Scholar
  9. 9.
    Lally M, Broussier R, Gautheron B (2000) Ferrocene-based phosphonite–phosphine ligands, Pd and Rh complexes. Tetrahedron Lett 41:1183–1185CrossRefGoogle Scholar
  10. 10.
    Hierso J, Lacassin F, Broussier R, Amardeil R, Meunier P (2004) Synthesis and characterisation of a new class of phosphine-phosphonite ferrocenediyl dinuclear rhodium complexes. J Organomet Chem 689:766–769CrossRefGoogle Scholar
  11. 11.
    Trzeciak A, Štěpnička P, Mieczyńska E, Ziółkowski J (2005) Rhodium (I) complexes with 1′-(diphenylphosphino) ferrocenecarboxylic acid as active and recyclable catalysts for 1-hexene hydroformylation. J Organomet Chem 690:3260–3267CrossRefGoogle Scholar
  12. 12.
    Peng X, Wang Z, Xia C, Ding K (2008) Ferrocene-based bidentate phosphonite ligands for rhodium (I)-catalyzed enantioselective hydroformylation. Tetrahedron Lett 49:4862–4864CrossRefGoogle Scholar
  13. 13.
    Kühnert J, Ecorchard P, Lang H (2008) Heterometallic transition-metal complexes based on 1-carboxy-1′-(diphenylphosphanyl) ferrocene,(tmeda/pmdta) zinc (II), and gold (I) units. Eur J Inorg Chem 2008:5125–5137CrossRefGoogle Scholar
  14. 14.
    Bebbington M, Bontemps S, Bouhadir G, Hanton M, Tooze R, Van Rensburg H, Bourissou D (2010) A 1,1′-ferrocenyl phosphine-borane: synthesis, structure and evaluation in Rh-catalyzed hydroformylation. New J Chem 34:1556–1559CrossRefGoogle Scholar
  15. 15.
    Madalkska M, Lonnecke P, Hey-Hawkins E (2014) Aryl-based ferrocenyl phosphine ligands in the rhodium (I)-catalyzed hydroformylation of olefins. J Mol Catal A 384:137–142CrossRefGoogle Scholar
  16. 16.
    Stockmann S, Lonnecke P, Bauer S, Hey-Hawkins E (2014) Heterobimetallic complexes with ferrocenyl-substituted phosphaheterocycles. J Organomet Chem 751:670–677CrossRefGoogle Scholar
  17. 17.
    Gupta K, Sutar A (2008) Catalytic activities of Schiff base transition metal complexes. Coord Chem Rev 252:1420–1450CrossRefGoogle Scholar
  18. 18.
    Siangwata S, Baartzes N, Makhubela B, Smith G (2015) Synthesis, characterisation and reactivity of water-soluble ferrocenylimine-Rh(I) complexes as aqueous-biphasic hydroformylation catalyst precursors. J Organomet Chem 769:26–32CrossRefGoogle Scholar
  19. 19.
    Siangwata S, Chulu S, Oliver C, Smith G (2016) Rhodium-catalysed hydroformylation of 1-octene using aryl and ferrocenyl Schiff base-derived ligands. Appl Organomet Chem 31(4):1–9Google Scholar
  20. 20.
    Breckwoldt N, Goosen N, Van der Gryp P, Smith G (2019) Hydroformylation of the post-metathesis product 7-tetradecene using rhodium(I) Schiff base derived precatalysts. Appl Catal A 573:49–55CrossRefGoogle Scholar
  21. 21.
    Deshpande R, Chaudhari R (1988) Kinetics of hydroformylation of 1-hexene using homogeneous HRh(CO)(PPh3)3 complex catalyst. Ind Eng Chem Res 27:1996–2002CrossRefGoogle Scholar
  22. 22.
    Bhanage B, Divekar S, Deshpande R, Chaudhari R (1997) Kinetics of hydroformylation of l-dodecene using homogeneous HRh(CO)(PPh3)3 catalyst. J Mol Catal A 115:247–257CrossRefGoogle Scholar
  23. 23.
    Deshpande R, Bhanage B, Divekar S, Kanagasabapathy S, Chaudhari R (1998) Kinetics of hydroformylation of ethylene in a homogeneous medium: comparison in organic and aqueous systems. Ind Eng Chem Res 37:2391–2396CrossRefGoogle Scholar
  24. 24.
    Nair V, Mathew S, Chaudhari R (1999) Kinetics of hydroformylation of styrene using homogeneous rhodium complex catalyst. J Mol Catal A 143:99–110CrossRefGoogle Scholar
  25. 25.
    Kiss G, Mozeleski E, Nadler K, Van Driessche E, DeRoover C (1999) Hydroformylation of ethene with triphenylphosphine modified rhodium catalyst: kinetic and mechanistic studies. J Mol Catal A 138:155–176CrossRefGoogle Scholar
  26. 26.
    Rosales M, Gonzalez A, Guerrero Y, Pacheco I, Sanchez-Delgado R (2007) Kinetics and mechanisms of homogeneous catalytic reactions: part 7. Hydroformylation of 1-hexene catalyzed by cationic complexes of rhodium and iridium containing PPh3. J Mol Catal A 270:241–249CrossRefGoogle Scholar
  27. 27.
    Bernas A, Maki-Arvela P, Lehtonen J, Salmi T, Murzin D (2008) Kinetic modeling of propene hydroformylation with Rh/TPP and RH/CHDPP catalysts. Ind Eng Chem Res 47:4317–4324CrossRefGoogle Scholar
  28. 28.
    Rosales M, Chacon G, Gonzalez A, Pacheco I, Baricelli P, Melean L (2008) Kinetics and mechanisms of homogeneous catalytic reactions Part 9. Hydroformylation of 1-hexene catalyzed by a rhodium system containing a tridentated phosphine. J Mol Catal A 287:110–114CrossRefGoogle Scholar
  29. 29.
    Güven S, Hamers B, Franke R, Priske M, Becker M, Vogt D (2014) Kinetics of cyclooctene hydroformylation for continuous homogeneous catalysis. Catal Sci Technol 4:524–530CrossRefGoogle Scholar
  30. 30.
    Li X, Zhang K, Qin L, Ma H (2017) Kinetic studies of hydroformylation of 1-butene using homogeneous Rh/PPh3 complex catalyst. Mol Catal 443:270–279CrossRefGoogle Scholar
  31. 31.
    Breckwoldt N, Goosen N, Vosloo H, Van der Gryp P (2019) Kinetic evaluation of the hydroformylation of the post-metathesis product 7-tetradecene using bulky phosphite-modified rhodium catalyst. React Chem Eng 4:695–704CrossRefGoogle Scholar
  32. 32.
    Van der Gryp P, Marx S, Vosloo HCM (2012) Experimental, DFT and kinetic study of 1-octene metathesis with Hoveyda-Grubbs second generation precatalyst. J Mol Catal A 355:85–95CrossRefGoogle Scholar
  33. 33.
    Fogler H (2014) Elements of chemical reaction engineering. Pearson, LondonGoogle Scholar
  34. 34.
    Evans D, Osborn J, Wilkinson G (1968) Hydroformylation of alkenes by use of rhodium complex catalysts. J Chem Soc A 11:3133–3142CrossRefGoogle Scholar
  35. 35.
    Shaharun M, Dutta B, Mukhtar H, Maitra S (2010) Hydroformylation of 1-octene using rhodium-phosphite catalyst in a thermomorphic solvent system. Chem Eng Sci 65:273–281CrossRefGoogle Scholar
  36. 36.
    Koeken A, Van den Broeke L, Benes N, Keurentjes J (2011) Triphenylphosphine modified rhodium catalyst for hydroformylation in supercritical carbon dioxide. J Mol Catal A 346:94–101CrossRefGoogle Scholar
  37. 37.
    Kiedorf G, Hoang D, Müller A, Jörke A, Markert J, Arellano-Garcia H, Seidel-Morgenstern A, Hamel C (2014) Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using a rhodium-biphephos catalyst. Chem Eng Sci 115:31–48CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Process EngineeringUniversity of StellenboschMatielandSouth Africa
  2. 2.Department of ChemistryUniversity of Cape TownRondeboschSouth Africa
  3. 3.School of Chemical and Minerals Engineering, Research Focus Area for Chemical Resource BeneficiationPotchefstroomSouth Africa

Personalised recommendations