Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 205–215 | Cite as

Correlation of metal–organic framework structures and catalytic performance in Fischer–Tropsch synthesis process

  • Halimeh JananiEmail author
  • Ali Akbar Mirzaei
  • Alireza Rezvani
Article
  • 44 Downloads

Abstract

Two typical metal–organic frameworks (MOFs), i.e. tris(pyridine-2-carboxylato)-cobalt(III) monohydrate (MOF-1) and (μ2-pyridine 2,6-dicarboxylato)(pyridine 2,6-dicarboxylato) pentaaqua dicobalt(II)dihydrate (MOF-2) were employed for preparation of cobalt Fischer–Tropsch catalysts. Both MOF-derived catalysts were obtained by direct pyrolysis in N2 atmosphere at 500 °C. The pyrolysis of desired MOFs resulted nanoparticles embedded in the porous carbon matrix. Such catalysts can serve as useful catalysts for FT synthesis. Co-MOF-1 derived catalyst exhibited carbon monoxide conversion of 74.8% and selectivity towards long-chain hydrocarbons (C5+) of 49.2%. Also, it showed selectivity for short-chain hydrocarbons (C2–C4) of 36.19% for 50 h on steam while Co-MOF-2 derived catalyst displayed CO conversion of 81.6% and selectivity for long-chain hydrocarbons (C5+) and short-chain hydrocarbons of 56.8% and 28.2%. The superb activity and catalytic efficiency can be ascribed to the MOF precursors structures. This study investigated the relationship between MOF structure and catalytic performance and presented a new approach to design novel super active catalysts with preferable selectivity for Fischer–Tropsch synthesis by opting the suitable MOF precursors.

Keywords

Metal–organic frameworks Pyrolysis Fischer–Tropsch synthesis Co catalysts 

Notes

Acknowledgements

We thank the University of Sistan and Baluchestan for support this funding.

Supplementary material

11144_2019_1626_MOESM1_ESM.tif (134 kb)
Supplementary material 1 (TIFF 133 kb)
11144_2019_1626_MOESM2_ESM.tif (106 kb)
Supplementary material 2 (TIFF 106 kb)
11144_2019_1626_MOESM3_ESM.tif (18 kb)
Supplementary material 3 (TIFF 17 kb)
11144_2019_1626_MOESM4_ESM.tif (24 kb)
Supplementary material 4 (TIFF 24 kb)
11144_2019_1626_MOESM5_ESM.tif (14 kb)
Supplementary material 5 (TIFF 14 kb)
11144_2019_1626_MOESM6_ESM.tif (90 kb)
Supplementary material 6 (TIFF 90 kb)
11144_2019_1626_MOESM7_ESM.tif (57 kb)
Supplementary material 7 (TIFF 57 kb)

References

  1. 1.
    Xiong H, Jewell LL, Coville NJ (2015) ACS Catal 5(4):2640–2658CrossRefGoogle Scholar
  2. 2.
    Sun X, Suarez AIO, Meijerink M, Van Deelen T, Ould-Chikh S, Zečević J et al (2017) Nat Commun 8(1):1680CrossRefGoogle Scholar
  3. 3.
    Santos VP, Wezendonk TA, Jaén JJD, Dugulan AI, Nasalevich MA, Islam HU et al (2015) Nat Commun 6:6451CrossRefGoogle Scholar
  4. 4.
    Qiu B, Yang C, Guo W, Xu Y, Liang Z, Ma D, Zou R (2017) J Mater Chem A 5(17):8081–8086CrossRefGoogle Scholar
  5. 5.
    Cui Y, Li B, He H, Zhou W, Chen B, Qian G (2016) Acc Chem Res 49(3):483–493CrossRefGoogle Scholar
  6. 6.
    Loera-Serna S, Ortiz E (2016) Catalytic applications of metal-organic frameworks. In: Luis N (ed) Advanced catalytic materials-photocatalysis and other current trends. InTech, RijekaGoogle Scholar
  7. 7.
    Majewski MB, Peters AW, Wasielewski MR, Hupp JT, Farha OK (2018) ACS Energy Lett 3(3):598–611CrossRefGoogle Scholar
  8. 8.
    Bedel L, Roger AC, Estournes C, Kiennemann A (2003) Catal Today 85(2–4):207–218CrossRefGoogle Scholar
  9. 9.
    Bedel L, Roger AC, Rehspringer JL, Zimmermann Y, Kiennemann A (2005) J Catal 235(2):279–294CrossRefGoogle Scholar
  10. 10.
    An B, Cheng K, Wang C, Wang Y, Lin W (2016) ACS Catal 6(6):3610–3618CrossRefGoogle Scholar
  11. 11.
    Fu AY, Wang DQ (2005) Acta Crystallogr Sect E 61(3):m481-2Google Scholar
  12. 12.
    Yang L, Crans DC, Miller SM, la Cour A, Anderson OP, Kaszynski PM, Godzala ME, Austin LD, Willsky GR (2002) Inorg Chem 41(19):4859–4871CrossRefGoogle Scholar
  13. 13.
    Wang Z, Wang C, Chen S, Liu Y (2014) Int J Hydrog Energy 39(11):5644–5652CrossRefGoogle Scholar
  14. 14.
    Visconti CG, Lietti L, Tronconi E, Forzatti P, Zennaro R, Finocchio E (2009) Appl Catal A 355(1–2):61–68CrossRefGoogle Scholar
  15. 15.
    Arsalanfar M, Mirzaei AA, Atashi H, Bozorgzadeh HR, Vahid S, Zare A (2012) Fuel Process Technol 96:150–159CrossRefGoogle Scholar
  16. 16.
    Mirzaei AA, Faizi M, Habibpour R (2006) Appl Catal A 306:98–107CrossRefGoogle Scholar
  17. 17.
    Mirzaei AA, Shahriari S, Arsalanfar M (2011) J Nat Gas Sci Eng 3(4):537–546CrossRefGoogle Scholar
  18. 18.
    Fu T, Liu R, Lv J, Li Z (2014) Fuel Process Technol 122:49–57CrossRefGoogle Scholar
  19. 19.
    He L, Weniger F, Neumann H, Beller M (2016) Angew Chem Int Ed 55(41):12582–12594CrossRefGoogle Scholar
  20. 20.
    Yang Z, Guo S, Pan X, Wang J, Bao X (2011) Energy Environ Sci 4(11):4500–4503CrossRefGoogle Scholar
  21. 21.
    Vannice MA, Garten RL (1980) J Catal 66(1):242–247CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Halimeh Janani
    • 1
    Email author
  • Ali Akbar Mirzaei
    • 1
  • Alireza Rezvani
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations