Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 193–204 | Cite as

Enhanced CO oxidation and toluene oxidation on CuCeZr catalysts derived from UiO-66 metal organic frameworks

  • Lu Wang
  • Guangyi Yin
  • Yiqiang Yang
  • Xiaodong ZhangEmail author
Article
  • 67 Downloads

Abstract

In this work, several MxOy-supported ZrO2 (MxOy = CuO, CeO2, CuO-CeO2) catalysts were prepared through the direct decomposition of metal organic frameworks UiO-66 in air. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), N2 adsorption–desorption isotherms and H2-temperature programmed reduction (H2-TPR). The catalytic performance for CO oxidation and toluene oxidation over Zr based catalysts was investigated. Amongst the prepared catalysts, CuCeZr catalyst displayed excellent CO oxidation and toluene oxidation performance. The addition of Cu was favorable to the enhancement of catalytic performance. Importantly, the addition of cerium led to the formation of easily reducible surface copper species, consequently improving the CO oxidation and toluene oxidation performance.

Keywords

CO oxidation Toluene oxidation CuCeZr catalyst MOFs precursor 

Notes

Acknowledgements

This work was supported financially by the Natural Science Foundation of Shanghai (19ZR1434900) and the National Natural Science Foundation of China (No. 21507086, 21507109, 2180606107, 51508327, 41673093).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11144_2019_1623_MOESM1_ESM.docx (767 kb)
Supplementary material 1 (DOCX 767 kb)

References

  1. 1.
    Suh MP, Park HJ, Prasad TK, Lim DW (2012) Hydrogen storage in MOFs. Chem Rev 112:782–835CrossRefGoogle Scholar
  2. 2.
    Jelic J, Denysenko D, Volkmer D, Reuter K (2013) Computational screening study towards redox-active metal-organic frameworks. New J Phys 11:5326–5333Google Scholar
  3. 3.
    Zhang XD, Yang Y, Song L, Chen JF, Yang YQ, Wang YX (2019) Enhanced adsorption performance of gaseous toluene on defective UiO-66 metal organic framework: equilibrium and kinetic studies. J Hazard Mater 365:597–605CrossRefGoogle Scholar
  4. 4.
    Zhang XD, Yang Y, Lv XT, Wang YX, Liu N, Chen D, Cui LF (2019) Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework. J Hazard Mater 366:140–150CrossRefGoogle Scholar
  5. 5.
    Zhang XD, Lv XT, Shi XY, Yang Y, Yang YQ (2019) Enhanced hydrophobic UiO-66 (University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air. J Colloid Interface Sci 539:152–160CrossRefGoogle Scholar
  6. 6.
    Liu N, Jing C, Li Z, Huang W, Gao B, You F, Zhang X (2019) Effect of synthesis conditions on the photocatalytic degradation of Rhodamine B of MIL-53 (Fe). Mater Lett 237:92–95CrossRefGoogle Scholar
  7. 7.
    Liu N, Huang W, Tang M, Yin C, Gao B, Li Z, Tang L, Lei J, Cui L, Zhang X (2019) In-situ fabrication of needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic mechanism of ibuprofen. Chem Eng J 359:254–264CrossRefGoogle Scholar
  8. 8.
    Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 2:1196–1231CrossRefGoogle Scholar
  9. 9.
    Zhang XD, Li HX, Lv XT, Xu JC, Wang YX, He C, Liu N, Yang YQ, Wang Y (2018) Facile synthesis of highly efficient amorphous MnMIL-100 catalysts: the formation mechanism and the structure changes during the application for CO oxidation. Chem Eur J 24:8822–8832CrossRefGoogle Scholar
  10. 10.
    Luo YJ, Zheng YB, Zuo JC, Feng XS, Wang XY, Zhang TH, Zhang K, Jiang LL (2018) Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation. J Hazard Mater 349:119–127CrossRefGoogle Scholar
  11. 11.
    Zhang XD, Li HX, Hou FL, Yang Y, Dong H, Liu N, Wang YX, Cui LF (2017) Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100. Appl Surf Sci 411:27–33CrossRefGoogle Scholar
  12. 12.
    Zhang XD, Yang Y, Song L, Wang YX, He C, Wang Z, Cui LF (2018) High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol Catal 447:80–89CrossRefGoogle Scholar
  13. 13.
    Yang YQ, Dong H, Wang Y, He C, Wang YX, Zhang XD (2018) Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation. J Solid State Chem 258:582–587CrossRefGoogle Scholar
  14. 14.
    Yang YQ, Dong H, Wang Y, Wang YX, Liu N, Zhang XD (2017) A facile synthesis for porous CuO/Cu2O composites derived from MOFs and their superior catalytic performance for CO oxidation. Inorg Chem Commun 86:74–77CrossRefGoogle Scholar
  15. 15.
    Zhang XD, Yang Y, Lv XT, Wang YX, Cui LF (2017) Effects of preparation method on the structure and catalytic activity of Ag–Fe2O3 catalysts derived from MOFs. Catalysts. 7:382CrossRefGoogle Scholar
  16. 16.
    He C, Jiang Z, Ma M, Zhang XD, Shi JW, Hao ZP (2018) Understanding the promotional effect of Mn2O3 on micro/mesoporous hybrid silica nanocubic-supported Pt catalysts for the low temperature destruction of methyl-ethyl-ketone: an experimental and theoretical study. ACS Catal 8:4213–4229CrossRefGoogle Scholar
  17. 17.
    Zazhigalov S, Elyshev A, Lopatin S, Larina T, Cherepanova S, Mikenin P, Pisarev D, Baranov D, Zagoruiko A (2017) Copper-chromite glass fiber catalyst and its performance in the test reaction of deep oxidation of toluene in air. Reac Kinet Mech Cat 120:247–260CrossRefGoogle Scholar
  18. 18.
    Weng XL, Meng QJ, Liu JJ, Jiang WY, Pattisson S, Wu ZB (2019) Catalytic oxidation of chlorinated organics over lanthanide perovskites: effects of phosphoric acid etching and water vapor on chlorine desorption behavior. Environ Sci Technol 53:884–893CrossRefGoogle Scholar
  19. 19.
    Sun PF, Wang WL, Weng XL, Dai XX, Wu ZB (2018) Alkali potassium induced HCl/CO2 selectivity enhancement and chlorination reaction inhibition for catalytic oxidation of chloroaromatics. Environ Sci Technol 52:6438–6447CrossRefGoogle Scholar
  20. 20.
    Weng XL, Sun PF, Long Y, Meng QJ, Wu ZB (2017) Catalytic oxidation of chlorobenzene over MnxCe1−xO2/HZSM-5 catalysts: a study with practical implications. Environ Sci Technol 51:8057–8066CrossRefGoogle Scholar
  21. 21.
    Wang Y, Li X, Lv T, Wu R, Zhao Y (2018) Effect of precipitants on the catalytic performance of Pd-Cu/attapulgite clay catalyst for CO oxidation at room temperature and in humid circumstances. Reac Kinet Mech Cat 124:203–216CrossRefGoogle Scholar
  22. 22.
    Moretti E, Molina AI, Sponchiaa G, Talona A, Frattini R, Rodriguez-Castellonb E, Storaro L (2017) Low-temperature carbon monoxide oxidation over zirconia-supported CuO-CeO2 catalysts: effect of zirconia support properties. Appl Sur Sci 403:612–622CrossRefGoogle Scholar
  23. 23.
    Kang RN, Wei XL, Li HX, Bin F, Zhao RZ, Hao QL, Dou BJ (2018) Sol-gel enhanced mesoporous Cu-Ce-Zr catalyst for toluene oxidation. Combust Sci Technol 190:878–892CrossRefGoogle Scholar
  24. 24.
    Singhania A, Gupta SM (2017) Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion. Beilstein J Nanotechnol 8:1546–1552CrossRefGoogle Scholar
  25. 25.
    Zhang XD, Hou FL, Li HX, Yang Y, Wang YX, Liu N, Yang YQ (2018) A strawsheave-like metal organic framework Ce-BTC derivative containing high specific surface area for improving the catalytic activity of CO oxidation reaction. Micro Meso Mater 259:211–219CrossRefGoogle Scholar
  26. 26.
    Zhang XD, Hou FL, Yang Y, Wang YX, Liu N, Chen D, Yang YQ (2017) A facile synthesis for cauliflower like CeO2 catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation. Appl Surf Sci 423:771–779CrossRefGoogle Scholar
  27. 27.
    Zhu CL, Ding T, Gao WX, Ma K, Tian Y, Li XG (2017) CuO/CeO2 catalysts synthesized from Ce-UiO-66 metal-organic framework for preferential CO oxidation. Int J Hydrogen Energy 42:17457–17465CrossRefGoogle Scholar
  28. 28.
    Zhang XD, Zhang XL, Song L, Hou FL, Yang YQ, Wang YX, Liu N (2018) Enhanced catalytic performance for CO oxidation and preferential CO oxidation over CuO/CeO2 catalysts synthesized from metal organic framework: effects of preparation methods. Int J Hydrogen Energy 43:18279–18288CrossRefGoogle Scholar
  29. 29.
    Wang Y, Yang YQ, Liu N, Wang YX, Zhang XD (2018) Sword-like CuO/CeO2 composites derived from Ce-BTC metal organic framework with superior CO oxidation performance. RSC Adv 8:33096–33102CrossRefGoogle Scholar
  30. 30.
    Zhang XD, Yang Y, Huang WY, Yang YQ, Wang YX, He C, Liu N, Wu MH, Tang L (2018) g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Mater Res Bull 99:349–358CrossRefGoogle Scholar
  31. 31.
    Zhang XD, Dong H, Wang Y, Liu N, Zuo YH, Cui LF (2016) Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation. Chem Eng J 283:1097–1107CrossRefGoogle Scholar
  32. 32.
    Qu ZP, Wang Z, Zhang XY, Wang H (2016) Role of different coordinated Cu and reactive oxygen species on the highly active Cu–Ce–Zr mixed oxides in NH3-SCO: a combined in situ EPR and O2-TPD approach. Catal Sci Technol 6:4491–4502CrossRefGoogle Scholar
  33. 33.
    Moretti E, Storaro L, Talon A, Riello P, Infantes Molina A, Rodríguez-Castellón E (2015) 3-D flower like Ce–Zr–Cu mixed oxide systems in the CO preferential oxidation (CO-PROX): effect of catalyst composition. Appl Catal B 168–169:385–395CrossRefGoogle Scholar
  34. 34.
    Wang Z, Qu Z, Quan X, Li Z, Wang H, Fan R (2013) Selective catalytic oxidation of ammonia to nitrogen over CuO–CeO2 mixed oxides prepared by surfactant-templated method. Appl Catal B 134–135:153–166CrossRefGoogle Scholar
  35. 35.
    Ratnasamy P, Srinivas D, Satyanarayana CVV, Manikandan P, Kumaran RSS, Sachin M, Shetti VN (2004) Influence of the support on the preferential oxidation of CO in hydrogen-rich steam reformates over the CuO–CeO2–ZrO2 system. J Catal 221:455–465CrossRefGoogle Scholar
  36. 36.
    Aguila G, Gracia F, Araya P (2008) CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2 in the oxidation of CO at low temperature. Appl Catal A 343:16–24CrossRefGoogle Scholar
  37. 37.
    Hattori M, Haneda M, Ozawa M (2016) Influence of Ce/Zr ratio on CO oxidation activity of ceria-zirconia supported Cu catalyst. Jpn J Appl Phys 55:01AE05CrossRefGoogle Scholar
  38. 38.
    Yang Z, Mao D, Guo X, Lu G (2014) 2014 CO oxidation over CuO catalysts supported on CeO2–ZrO2 prepared by microwave-assisted co-precipitation: the influence of CuO content. J Rare Earth 32:117–123CrossRefGoogle Scholar
  39. 39.
    Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G (2008) Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf Interface Anal 40:264–267CrossRefGoogle Scholar
  40. 40.
    Alammar T, Noei H, Wang Y, Grünert W, Mudring AV (2015) Ionic liquid-assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation. ACS Sustain Chem Eng 3:42–54CrossRefGoogle Scholar
  41. 41.
    Qu ZP, Yu FL, Zhang XD, Wang Y, Gao JS (2013) Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation. Chem Eng J 229:522–532CrossRefGoogle Scholar
  42. 42.
    Xu L, Wang C, Chang H, Wu Q, Zhang T, Li J (2018) New insight into SO2 poisoning and regeneration of CeO2–WO3/TiO2 and V2O5–WO3/TiO2 catalysts for low-temperature NH3–SCR. Environ Sci Technol 52:7064–7071CrossRefGoogle Scholar
  43. 43.
    Wang Y, Wang Y, Yu L, Wang JY, Du BB, Zhang XD (2019) Enhanced catalytic activity of templated-double perovskite with 3D network structure for salicylic acid degradation under microwave irradiation: insight into the catalytic mechanism. Chem Eng J 368:115–128CrossRefGoogle Scholar
  44. 44.
    Moreno M, Bergamini L, Baronetti GT, Laborde MA, Marino FJ (2010) Mechanism of CO oxidation over CuO/CeO2 catalysts. Int J Hydrog Energy 35:5918–5924CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Public Experiment Center, University of Shanghai for Science and TechnologyShanghaiChina
  2. 2.School of Environment and ArchitectureUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations